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Motivation

mathematics:

dynamical system: is a system in which a function describes 
the time dependence of a point in some geometrical space

physics:

dynamical system: is described as a particle (or an ensemble) 
whose state varies over time; obeys differential equations involving 
time derivatives.

Making predictions about the system's future behavior requires
an analytical solution of such equations or their integration over 
time through computer simulation.
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Continuous-time dynamical systems

ordinary differential equation (first order)
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terminology

d dimension of system
b control parameter
f nonlinear function (in case of nonlinear system)

state
initial state/condition
state variables

autonomous system

driven system
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Continuous-time dynamical systems

ordinary differential equation (first order)

Fundamentals of Analyzing Biomedical Signals Dynamical Systems 

- given by some model
- find solution for specific initial condition (given control parameter)

often only possible numerically
often not of particular interest

- allows general statements about ensembles of solutions

- extensions: delay, stochastic, partial differential equations
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Complexity of dynamical systems
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Not only in research, but also in the everyday world of politics and 
economics, we would all be better off if more people realized that
simple nonlinear systems do not necessarily possess simple 
dynamical properties.

Robert M. May
Simple mathematical models with very complicated dynamics,
Nature 261 (1976)

some elementary examples in physics:
- classical pendulum / harmonic oscillator 
- driven and damped pendulum
- celestial mechanics
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Example: Lottka-Volterra Model (predator-prey dynamics)
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A.J. Lottka

x: number of prey (e.g. hare)
y: number or predator (e.g. lynx)
a1,…a4: positive real parameter describing 

interaction between species

V.  Volterra

p
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a
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n

time

from: www.scholarpedia.org/article/Predator-prey_model

observation

model data
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Example: Lorenz oscillator
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E.N. Lorenz

- simple model for atmospheric convection
- butterfly effect: 

does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?

from: Kumar et al., Clim. Dyn. 38, 1521, 2012

observation

model data

from: G. Ansmann
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Chaotic dynamics (tentative definition)

- sensitive to initial conditions (butterfly effect)

- qualitatively recurring

but not:

- periodic

- stagnant

- “escalating”
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Discrete-time dynamical system

- easier to analyze

- easier to simulate

- every ODE can be transformed to a map
(e.g., via numerical integration or Poincaré sections)
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iterative map
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Example: logistic map

R. MayP.F. Verhulst

model for population growth (1837)
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Example: logistic map

from: G. Ansmann
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Example: logistic map

from: G. Ansmann
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Example: logistic map

The Feigenbaum constant:

let r1, r2, … denote the values of control parameter r at which
bifurcations happen.
We find:

- d: Feigenbaum constant
- universal for many similar processes
- also found in natural systems

turbulent cascade in fluids
nonlinear oscillations in electric circuits
nonlinear oscillations in chemical reactions (Belousov-Zhabotinskii reaction)
heart: ventricular fibrillation (lethal)
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Phase space

Phase space:

representation of states/trajectories 
(x) of the dynamics in d-dimensional 
space.

- time is only implicit
- also known as state space
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ordinary differential equation (first order)

Example:
harmonic oscillator
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Invariant sets
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Time-evolution function:

for any solution x of analogously for maps 

Forward-invariant set / manifold:

is a non-empty set for which holds:

Irreducible invariant set:

An invariant set without an invariant true subset



Attractors
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denotes a set for which holds:

- is an irreducible forward-invariant set

- there exists a neighborhood                    such that

- the maximal         is called basin of attraction

- dynamics within                  , i.e., motion onto the attractor,
is called transient

- more elaborate definitions to handle pathological cases
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Attractors
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- if the system dynamics is confined to a certain region in phase  
space, then this region is called attractor

- set of all solutions of the system’s dynamical equations 

- three kinds of (irreducible) invariant sets / attractors important to 
this course:

• fixed points
• periodic

simple periodic / limit cycle
quasiperiodic / torus, hypertorus

• strange / chaotic / fractal

each type corresponds to a different type of dynamics Lorenz attractor
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Intermezzo: Quasiperiodicity
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Incommensurability

two numbers a and b are incommensurable iff

Quasiperiodicity

superposition / combination of two (or more) periodic processes 
with incommensurable frequencies

from: G. Ansmann
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Intermezzo: Attractor Basins magnetic pendulum
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Intermezzo: Attractor Basins Julia sets
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Characterizing fixed points
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for continuous, differentiable maps (             ), we 
have:

z is fixed point of F
 {z} is invariant set
 F(z) = z

from local linearization and continuity of F, we have:

z is stable fixed point of F
 {z} is attractor
 F(z) = z and |F´(z)| < 1
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Characterizing fixed points
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for ordinary differential equations (             ), we 
have:

z is fixed point of f
 {z} is invariant set
 f(z) = 0

from local linearization and continuity of f, we have:

z is stable fixed point of f
 {z} is attractor
 f(z) = 0 and f has no eigenvalue  with
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Poincaré sections
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limit cycle:
 point

torus:
 limit cycle

chaotic motion:
 complex structures
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Poincaré sections
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Let s0 < s1 < … denote the times of “marker events”, e.g.:

• intersections of the trajectory with a plane (in a given direction)
• local extrema of some observable
• given phase of driving oscillation

Poincaré map
the map that yields the sequence x(s0 ), x(s1 ), …

• may distill relevant aspects of the dynamics
• simplifies dynamics
• allows to estimate stability of periodic solutions
• may be difficult to determine
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Classifying dynamical systems via divergence
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consider f as a vector field in phase space

 f describes the phase-space flow

 .f describes expansion/contraction
of infinitesimal phase-space volume V(t)
under f, i.e., time evolution (Liouville’s theorem):
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Classifying dynamical systems via divergence
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Three kinds of dynamics:

divergence name attractors

.f =  0 conservative no (Liouville)
.f > 0 unstable no
.f < 0 dissipative yes

(assuming constant sign along the trajectory)
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Divergence and Lyapunov exponents
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• divergence quantifies growth of volumes

• Lyapunov exponents quantify growth of “vectors”
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Lyapunov exponents
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Example: two identical Lorenz oscillators with initial conditions;
one oscillator is slightly perturbed (10-14) at t = 30

from: G. Ansmann

error grows exponentially growth limited by
system size



30

Largest Lyapunov exponent
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Consider evolution of two nearby trajectory segments s1 and s2

s2(t)

s1(t)

s1(t+t)

s2(t+t)

For infinitesimally close trajectory segments 
and for infinite time evolution (t → ) 
the distance between segments grows or shrinks exponentially:
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Largest Lyapunov exponent Definition
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Solve for 1 and implement the limits.

Let s1 and s2 denote two near trajectory segments of the dynamics.
The first Lyapunov exponent is defined as:

Also: largest Lyapunov exponent or just Lyapunov exponent.
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Further Lyapunov exponents
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A perturbation aligns itself along the direction of 
strongest expansion / weakest contraction.

• this takes some time (A and B)
• direction depends on the current state (C)
• orthogonal directions for further Lyapunov exponents (D)

s2(t)

s1(t)

s1(t+t)

s2(t+t)

A B

C D
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Lyapunov spectrum
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Second Lyapunov exponent
The largest Lyapunov exponent determined with perturbations 
orthogonal to the direction corresponding to the first Lyapunov 
exponent

Third Lyapunov exponent
The largest Lyapunov exponent determined with perturbations 
orthogonal to the directions corresponding to the first two Lyapunov 
exponents
…

• practical: frequent orthogonalizations
• as many Lyapunov exponents as phase-space dimensions:
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Lyapunov spectrum and type of Dynamics
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For bounded, continuous-time dynamical systems, we have:

signs of Lyapunov exponents dynamics

−, −−, −−−, … fixed point
+, ++, +++, …, +0, ++0, … not possible (unbounded)
0, 00, 000, … no dynamics ( f = 0)
0−, 0−−, 0−−−, … periodic / limit cycle
00−, 00−−, 00−−−, … quasiperiodic (torus)
000−, 0000−, …, 000−−, … quasiperiodic (hypertorus)
+0−, +0−−, +0−−−, … chaos
++0−, +++0−, …, ++0−−, … hyperchaos
∞, … noise
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Deterministic Chaos
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No commonly accepted definition.

For our purposes:

“A bounded, deterministic dynamics with a positive 
Lyapunov exponent.”

The exponential divergence or convergence of nearby trajectories
(Lyapunov exponents) is conceptually the most basic indicator of
deterministic chaos.

M. Sano and Y. Sawada
Measurement of the Lyapunov spectrum from a chaotic time series, PRL 55 (1985)
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Properties of Deterministic Chaos
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Necessary conditions:

• in continuous-time dynamical systems: three dimensions or more
• non-linearity

Properties:

• sensitivity to initial conditions (butterfly effect)
→ only predictable on a short time scale

• no regularity
• fractal or strange attractors
• many more (→ future lectures)
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So far:

• dynamical equations of motion known and fixed
• almost arbitrarily long time series (through simulation)
• high (unlimited) precision
• access to all dynamical variables
• no noise

Typical experimental situation:

• dynamical equations of motion unknown with changing parameters
• short time series
• low (limited) precision
• access to few (or only one) dynamical variables
• noise and uncertainties


