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Motivation

• linear methods 

- can yield complementary, useful information

- may decide about prerequisites for non-linear methods

- some are basic ingredients of non-linear methods

• non-linear methods may be overkill

• get acquainted with the pitfalls of data analysis

Fundamentals of Analyzing Biomedical Signals Linear Methods
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Statistical Data Analysis

model-independent

Fundamentals of Analyzing Biomedical Signals Linear Methods

model-dependent

• moments of distributions

• (in-)equality of distributions

• correlation

• …

• model fitting

• parameter estimation

• robust estimation

• …

descriptive statistics
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Distribution of Values
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Given: time series v: v1, v2, …, vN of some system observable x

Assumption: each value of the time series is independently 
sampled from some distribution

Assumption implies:

• no memory 

• no dynamics

• time is not important

• stationarity (definition: later)
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Distribution of Values Examples

Fundamentals of Analyzing Biomedical Signals Linear Methods

from: G. Ansmann
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Distribution of Values Examples
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from: G. Ansmann
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Statistical Moments of a Distribution
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first moment: mean

mean vs. expected value:

- mean    is a property of a dataset
- expected value      is a property of a population
- if a dataset is sampled from some population,

is the best estimator for      (of that population)

(law of large numbers) 7
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Statistical Moments of a Distribution
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second moment: variance

width of the distribution, variability of the time series

: standard deviation
normalization factor:

N-1: estimating variance from a dataset
N : variance of a population
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Statistical Moments of a Distribution
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third moment: skewness

s = 0 for any symmetric distribution

from: G. Ansmann

s<0 s=0 s>0 s>>0
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Statistical Moments of a Distribution
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fourth moment: kurtosis

the normal distribution has k= 0

from: G. Ansmann

k<<0 k<0 k=0 k>0
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Statistical Moments of a Distribution

Fundamentals of Analyzing Biomedical Signals Linear Methods

interpreting skewness and kurtosis

• typical noise is a superposition of many small effects
→ typical noise is approximately normally distributed

(central limit theorem)

• normal distribution is symmetric and mesokurtic

• significantly non-zero skewness and kurtosis hint at

- non-linearity of measurement
- dynamics
- non-linear dynamics
- extremes
- … 11
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Statistical Tests Example: skewness
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• assumption / prerequisite:
data independently sampled from some population

• null hypothesis:
population not skewed

• p-value / error probability / significance:
probability to find observed skewness
in a population complying with the null hypothesis

probability that null hypothesis is true

typical procedure:
1. choose significance threshold , e.g.,  = 0.05
2. if p < , reject null hypothesis, e.g., consider data skewed 12
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Statistical Tests Example: skewness
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Beware the prerequisites !
significance values are meaningless if assumptions are not fulfilled

results for skewness test for 

T p

(0.00, 0.01, …, 9.00) 4 · 10-9

(0.00, 0.01, …, 40.00) 0.02
(0.00, 0.01, …, 41.00) 0.002
(0.0, 0.1, …, 9.0) 0.05
(0, 1, …, 100) 0.95

problem: data not independent ! 13
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Statistical Tests Comparing Distributions
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Comparing means Student’s t-test

Given: time series v: v1, v2, …, vNv
and w: w1, w2, …, wNw

and respective means

p-value: tables or incomplete beta-function 14
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Statistical Tests Comparing Distributions
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Comparing variances F-test

Given: time series v: v1, v2, …, vNv
and w: w1, w2, …, wNw

and respective variances

p-value: tables or incomplete beta-function 15
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Statistical Tests Comparing Distributions
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Kolmogorov-Smirnov (KS) test

based on cumulative distribution functions:

significance obtained from maximal distance

between CDFs

from: G. Ansmannp-value: tables 16
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Statistical Tests Example: KS-test
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Beware the prerequisites (once more) !
significance values are meaningless if assumptions are not fulfilled

results for comparing  with

T1 T2 p

(0.00, 0.01, …, 9.00) (3.00, 3.01, …, 12.00) 6 · 10−33

(0.00, 0.01, …, 40.00) (3.00, 3.01, …, 43.00) 2 · 10−5

(0.0, 0.1, …, 9.0) (3.0, 3.1, …, 12.0) 0.001
(0, 1, …, 100) (3, 4, …, 103) 0.99

problem: data not independent ! 17
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Statistical Tests Comparing Distributions
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Pearson’s correlation coefficient

r = 1: perfect correlation

r = 0: no correlation

r = −1: perfect anti-correlation

Given: time series v: v1, v2, …, vN and w: w1, w2, …, wN

covariance

Pearson’s r
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Statistical Tests Comparing Distributions
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Pearson’s correlation coefficient

from: G. Ansmann vivivi

vi vi vi

wi

wi
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Statistical Tests Cross-Correlation
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extension of Pearson’s correlation coefficient

Motivation:
- possible offset in time-dependent data
- sensors may capture dynamics with delay between them

Given: time series v: v1, v2, …, vN and 

shifted time series w: w1+, w2+ , …, wN

Cross-correlation (with appropriately truncated time series):

symmetry: 20
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Statistical Tests Cross-Correlation

Fundamentals of Analyzing Biomedical Signals Linear Methods

Intermezzo: application of cross-correlation

task: find delay and synchrony between two time series

1. find delay that maximizes cross-correlation:

2. use maximized cross-correlation as measure for synchrony

restrictions:
assumes comparable dynamics
assumes “simple” form of synchronization (details later)
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Statistical Tests Auto-Correlation
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Auto-correlation (with appropriately truncated time series):

properties:

positive autocorrelation implies some repeating structure in the data
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Statistical Tests Auto-Correlation: Examples
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from: G. Ansmann

23



24

Statistical Tests Rank-based Methods
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It is sometimes more appropriate to consider how values rank instead
of considering the actual values:

pros: robust against outliers, often fewer constraints on data
cons: information is discarded

amplitude-based method

mean
Pearson’s r

Kolmogorov-Smirnov test

rank-based analogous method

median
Kendall’s tau, Spearman’s rho

Mann-Whitney test
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Stationarity
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- Stationarity is a system property!

- definition for time series analysis:

“a (stochastic) process is called stationary if the distribution 
of its states over an ensemble of realizations of that process 
does not depend on time”

- this implies: 
constancy of all statistical moments (mean, variance, …) 
and all joint statistical moments (covariance, …)

- examples for non-stationary processes:
- dynamics with changing parameters
- driven dynamics
- transient dynamics 25
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Stationary or not?

Fundamentals of Analyzing Biomedical Signals Linear Methods
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Stationarity

Fundamentals of Analyzing Biomedical Signals Linear Methods

prerequisite of most analysis techniques

• ensures reproducibility of experiments

• required for ergodicity
(time average ↔ phase space average)

• depends on the time scale:

on short time scales, an non-stationary process
can be approximated as stationary

on long time scales, instationarities may be regarded
as parts of the dynamics or a driver
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Stationarity
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strong stationarity

“a (stochastic) process is called strongly stationary if the 
distribution  of its states over an ensemble of realizations 
of that process does not depend on time”

weak stationarity

“a (stochastic) process is called weakly stationary if its mean, 
variance, and covariances do not depend on time”
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Frequency Spectrum Identifying hidden periodicities

Fundamentals of Analyzing Biomedical Signals Linear Methods

Assumption:

The time series can be decomposed into periodic components

This implies

• periodicity, quasiperiodicity
• no chaos
• memory

29
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Frequency Spectrum Fourier transform
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Continuous Fourier transform:

Discrete Fourier transform:

Numerical realization:
- Fast Fourier Transform (FFT)
- beware how the output is aligned 30
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Properties of the Fourier transform
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Convolution theorem

Correlation theorem

Wiener-Khinchin theorem

Plancharel theorem

Parseval’s theorem

… and respective analogues for the inverse Fourier transform
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Fourier transform Examples
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from: G. Ansmann
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Fourier transform Spectral Leakage

Fundamentals of Analyzing Biomedical Signals Linear Methods

from: G. Ansmann

problem:
- integration limits (-  to + ) ignored
- effectively: convolution of an infinitely long periodic signal with    
a rectangular window of finite (N) size   spectral leakage
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Fourier transform Spectral Leakage and Windowing
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from: G. Ansmann
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Fourier transform Spectral Leakage and Windowing
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from: G. Ansmann
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Fourier transform Spectral Leakage and Windowing
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from: G. Ansmann
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Fourier transform Spectral Leakage and Windowing
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from: G. Ansmann
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Fourier transform Uncertainty

Fundamentals of Analyzing Biomedical Signals Linear Methods

The standard deviation of each Fourier coefficient is as large 
as its actual value!

Minimization of uncertainty (ergodicity assumed)

→ averaging over moving windows in the time domain

→ moving average in the frequency domain

38
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Linear Stochastic Processes

Fundamentals of Analyzing Biomedical Signals Linear Methods

processes whose realizations depend on chance

• demonstrate limits of linear methods

• contain most real linear processes as a special case

• null model / null hypothesis

• used for data-driven modelling and forecasting

39



40

Linear Stochastic Processes White Noise

Fundamentals of Analyzing Biomedical Signals Linear Methods

Each sample/value is independently drawn from the same 
distribution:

• all frequencies are equally present (analogy: white light)
• autocorrelation is zero, except for a delay of 1
• most often: Gaussian white noise
• basis for the following models.

40
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Fundamentals of Analyzing Biomedical Signals Linear Methods

from: G. Ansmann

Linear Stochastic Processes White Noise

vi

vi
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Linear Stochastic Processes AR(k)-processes

Autoregressive process of order k=1 (AR(1))

Idea: Random process with some memory

for  > 0, autocorrelation decays exponentially
for  < 0, exponentially damped oscillation

42
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from: G. Ansmann

vi

vii

k = 1 
 = 0.8

Linear Stochastic Processes AR(k)-processes
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from: G. Ansmann

vi

vii

Linear Stochastic Processes AR(k)-processes

44

k = 1 
 = -0.9
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Autoregressive process of order k (AR(k))

Idea: Random process with some memory

Autocorrelation is superposition of exponential decays
and exponentially damped oscillations

Linear Stochastic Processes AR(k)-processes
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Autoregressive moving-average process of orders k,l (AR(k,l))

Idea: Random process with some memory and smoothed noise

Linear Stochastic Processes ARMA(k,l)-processes
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from: G. Ansmann

vii

Linear Stochastic Processes ARMA-processes

k=l=4

vi
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- continuous-time, e.g., stochastic differential equations

- nonlinear stochastic processes

Further Stochastic Processes
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Applying linear methods sine wave

from: G. Ansmann
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Applying linear methods quasiperiodic

from: G. Ansmann
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Applying linear methods Lorenz oscillator

from: G. Ansmann
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Applying linear methods logistic map

from: G. Ansmann
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Applying linear methods Gaussian white noise

from: G. Ansmann
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Applying linear methods

54

Capabilities:
linear methods can:

- detect periodic processes
(non-decaying autocorrelation, discrete Fourier spectrum)

- hint at non-stochastic dynamics
(not normally distributed)

- yield data-based, linear models that may not capture 
essential dynamical properties

Restrictions:
linear methods cannot:

- robustly distinguish noise from chaos
- yield nonlinear or chaotic models
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Applying linear methods Zaslavskii map

from: G. Ansmann
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Applying linear methods Zaslavskii map

56

a discrete-time dynamical system that maps a point (xn , yn) 

in the plane to a new point (xn+1 , yn+1) :

G.M. Zaslavskii (1978). "The simplest case of a strange attractor". Phys. Lett. A. 69 (3): 145–147
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Applying linear methods Hénon map

57

a discrete-time dynamical system that maps a point (xn , yn) 

in the plane to a new point (xn+1 , yn+1) :

M. Hénon (1976). "A two-dimensional mapping with a strange attractor". Comm. Math. Phys. 50 (1): 69–77. 

two-dimensional extension of logistic map
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Applying linear methods

58

Stochasticity vs. Deterministic Chaos

- simple chaotic maps may be indistinguishable from stochastic 
processes with linear methods

- any pseudo-random-number generator is nothing but a very   
complex chaotic map

- but: nature may be more benign

Any sufficiently complex determinism
is indistinguishable from stochasticity


