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indication for nonlinearity?
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Fundamentals of Analyzing Biomedical Signals Phase Space

Brief Recap: Need for Nonlinear Methods

When faced with time series from nonlinear systems,
linear methods

- fail to detect the dynamics / structure in the data
- do not tell much about the dynamics

- cannot distinguish chaos from noise

— Structure can be seen in attractors.
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Brief Recap: Attractor

states of the dynamics for t — «

type of dynamics can be deduced from topology of attractor:
* point — fixed-point dynamics
* limit cycle — periodic dynamics

* torus — quasiperiodic dynamics
» strange attractor — chaos

attractor reflects further central properties of dynamics.
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Need for Phase-Space Reconstruction

Directly observing the phase space / attractor requires access
to all the system’s dynamical variables

But:
- often, only one dynamical variable accessible
(or a time series thereof)

- dimension of phase space is often unknown

Can we obtain from a single time series a set that preserves
important properties of the attractor?
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Phase Space

Phase-Space Reconstruction
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good and bad
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Phase-Space Reconstruction Topology

original attractor
— a d-manifold A C R

measurement and reconstruction
—amap ¢: A—R™

structure-preserving reconstruction
— topology-preserving map — an embedding

embedding
amap ¢ : A — R™ is called an embedding, if:
-V ¢ has full rank

- @is a diffeomorphism:

¢ is differentiable
qb_l exists and is differentiable .



Fundamentals of Analyzing Biomedical Signals Phase Space

Phase-Space Reconstruction Embeddings

Strong Whitney embedding theorem
For m = 2d, there exists a map ¢ : A — R that is an embedding.

Problem: ¢ usually unknown

Weak Whitney embedding theorem

For m > 2d+1, almost every continuously differentiable (C') map
¢ : A — R™is an embedding.

Problems:
- Often, we do not have m independent observables

(redundant observables are one of the reasons for “almost every”)
« We do not know d
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Phase-Space Reconstruction Delay-Embeddings
Idea:
- given time series v: v, v,, ..., vy of some system observable x

- derivatives (first, second, third, ...) are not fully redundant.
- approximate derivatives with difference quotients:

Vi = Vit1 — U
Vi = Uit — 20i41 +;
etc.

~» Vo, V.. ... are not fully redundant
~ Inverse Taylor expansion

13



Fundamentals of Analyzing Biomedical Signals Phase Space

Phase-Space Reconstruction Delay-Embeddings

Takens’ Theorem:

- let A =:{x1,29,..., 2N} with the index indicating time

- let h : A — R denote the measurement function that maps the
system observable x to the time series v

If m > 2d+1,

Cbh,f c= (Uia Vi—ry. .. 7Ui—(m—1)7')

Is an embedding for almost all dynamics, embedding delays t and
measurement functions /4. m denotes the embedding dimension.
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Phase-Space Reconstruction Delay-Embeddings

Takens’ Theorem and applications:

- given time series v: v, v,, ..., v of some system observable x

- consider m-dimensional states (mapped from the attractor to the
time series:
T
(Uz'a Vj—7yUj—275 .- - 7Ui—(m—1)7')

- for a proper embedding dimension m and embedding delay T,
these states make up a topologically equivalent reconstruction of
the attractor.
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Phase Space

Phase-Space Reconstruction

Example: Lorenz attractor
original
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Delay-Embeddings

reconstruction (7 = 0.08)
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Phase Space

Phase-Space Reconstruction

Example: brain dynamics

Delay-Embeddings

EEG (awake state)
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Phase Space

Phase-Space Reconstruction

Example: brain dynamics

Delay-Embeddings

EEG (epilepsy patient)
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Phase Space

Phase-Space Reconstruction

Example: brain dynamics

Delay-Embeddings

EEG (epileptic seizure)

19



Fundamentals of Analyzing Biomedical Signals Phase Space

Phase-Space Reconstruction Delay-Embeddings

Dynamical Invariants

Important characteristics of the dynamics are invariant
under the embedding transformation:

* Lyapunov exponents
» dimensions

* entropy
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Phase-Space Reconstruction Delay-Embeddings

Identifying embedding parameter delay

example: Lorenz attractor

from: G. Ansmann
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Phase-Space Reconstruction Delay-Embeddings

Identifying embedding parameter delay

example: Lorenz attractor
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Phase-Space Reconstruction Delay-Embeddings

Identifying embedding parameter delay

example: Lorenz attractor
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Phase-Space Reconstruction Delay-Embeddings

Identifying embedding parameter delay

example: Lorenz attractor
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Phase-Space Reconstruction Delay-Embeddings

Identifying embedding parameter delay

example: Lorenz attractor
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Phase-Space Reconstruction Delay-Embeddings
Identifying embedding parameter delay
requirement for an embedding:
(Vis Viery Vi—27 - - s Vi— (m—1)r) Not fully redundant

— aforementioned theorems: almost every 7 yields an embedding:

requirements for a good embedding:

» minimum redundancy of (v;, Vi—7, Vi—2r, . - ., Vi (m—1)r)
(to unfold the attractor)

* reasonably small T
(to avoid folding the attractor onto itself)

(compare to: linear independence vs. orthogonality)
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Phase-Space Reconstruction Delay-Embeddings

Identifying embedding parameter delay
using zeros of the autocorrelation

Idea:

if autocorrelation = 0 for some delay A =
v, and v, are linearly independent on average

— choose the first zero of the autocorrelation A as embedding delay
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Phase-Space Reconstruction Delay-Embeddings

Identifying embedding parameter delay

using the first minimum of mutual information /
Idea: if common information for some delay A is minimum=

v, and v,_, are independent on average (also includes nonlinear
relationships)

[(My, Ma) = H(My) — H(M1[M2) = H(M) + H(M2) — H(M;y, Ms)

where M, and M, denote measurements at times ¢ and #A, and
H = —) . pilogp; is the Shannon entropy

— choose the first minimum of the mutual information A as
embedding delay

A. Fraser and H. Swinney, Independent coordinates for strange attractors from mutual information, Phys. Rev. A 33 (1986)
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Phase-Space Reconstruction Delay-Embeddings

Identifying embedding parameter delay

first minimum
of mutual
information /

FIG. 1. Phase portraits of the Roux attractor (Ref, 3} in the Belousov-Zhabotimskii reaction. The dependence of the mutual isfoe-
mation { and the sutocorrelation function € on T are shown for cakulations over 32 763 pomnts. The coordinates used in constrecting
the partrait on the left are linearly independent (zero autocarrelationl, while the coordinates used im the portrait on the right are maore
penerally independent (local minkmum of mutusl informsation)

A. Fraser and H. Swinney, Independent coordinates for strange attractors from mutual information, Phys. Rev. A 33 (1986)
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Phase-Space Reconstruction Delay-Embeddings

Identifying embedding parameter delay

- zeros of the autocorrelation function
- minima of the mutual information
- many more

No method is perfect or commonly agreed upon.

Practically:

e try at least two methods

* judge by further analysis

« alternative for m < 3: visually inspect the attractor

« keep embedding window (m — 1)t (time span in an embedded
vector) constant

30



Fundamentals of Analyzing Biomedical Signals Phase Space

Phase-Space Reconstruction Delay-Embeddings

Identifying embedding parameter dimension
embedding theorems define “sufficient” embedding dimension m

problem: dimension of system under study usually unknown

choosing m overly high may hamper further analyses
(impact of noise, finite number of data points, computational
complexity)

— Need other ways to determine a good m
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Phase-Space Reconstruction Delay-Embeddings
Identifying embedding parameter dimension
Linear Dependence

idea:

» m Is higher than necessary

= attractor only covers a subspace of reconstruction space
(e.g., circle in m = 3)

« check whether embedded vectors have full rank.

difficulties:

* noise acts in all directions
« assumes linear dependence — dependence may be nonlinear
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Phase-Space Reconstruction Delay-Embeddings
Identifying embedding parameter dimension
Asymptotic Invariants

idea:

« m too small = wrong dynamical invariants (in general)
» m sufficient = correct dynamical invariants
— Increase m until dynamical invariants converge

difficulties:
» criterion for convergence under real conditions

(noise, finite number of data points, ...)
* wrong (in general) is unpredictable
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Phase-Space Reconstruction Delay-Embeddings

Identifying embedding parameter dimension
False Nearest Neighbors

idea:
» m too small = trajectories intersect

= points close in reconstruction space that aren’t close in
actual phase space (false nearest neighbors)

— Increase m until false nearest neighbors vanish.

M. B. Kennel, R. Brown, and H. D. I. Abarbanel, Determining minimum embedding dimension using a geometrical construction, Phys. Rev. A 45 (1992)
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Phase-Space Reconstruction Delay-Embeddings

Identifying embedding parameter dimension
False Nearest Neighbors

practically:
 choose threshold ¢ for nearest neighbors
* NN(m): number of pairs of points in m-dimensional
reconstruction space that are closer than ¢
* NN(m + 1) < NN(m)
= at least NN(m) — NN(m + 1) false nearest neighbors in
the m-dimensional reconstruction.

difficulties:
number of true nearest neighbors large and fluctuating (noise).
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Phase-Space Reconstruction Delay-Embeddings

Summary

delay embedding allows to reconstruct attractor from single
observable
» parameters m and 7 have to be carefully chosen
* reconstructed phase space may be used for:
- understanding
- prediction
- modelling

» characteristics preserved by reconstruction:
dimensions, Lyapunov exponents, entropy, ...

36



Fundamentals of Analyzing Biomedical Signals Phase Space

Phase-Space Reconstruction Delay-Embeddings

Extensions

* multivariate time series
« different embedding delays for each component

» state-dependent embedding delays
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