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Any method involving the notion of entropy, the very existence 
of which depends on the second law of thermodynamics, will 
doubtless seem to many far-fetched, and may repel beginners 
as obscure and difficult of comprehension.

Willard Gibbs
Graphical Methods in the Thermodynamics of Fluids (1906)
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fundamental concept
in thermodynamics 
and statistical mechanics
(1850s – 1880s)

entropy  expression of the disorder, or randomness of a system

- macroscopically:

- microscopically:

phase transitions, entropy-driven order (Landau theory); adiabatic 
demagnetization; …
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fundamental concept
in information theory 
(1940-1950)

entropy  amount of information needed to specify the full microstate 
of the system (Shannon entropy)

extensions and generalizations useful for time series analysis: 

Rényi entropies  diversity, uncertainty, or randomness of a system

Kolmogorov-Sinai entropies  chaoticity of a system
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entropy and Information

observing a system (measurement) is source of information
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system with 2 states
has maximum 

information content: 
1 bit

system with 4 states
has maximum 

information content: 
2 bits system with states

has maximum 
information content:



6

entropy and Information

measuring statistical events and average information gain
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given a priori knowledge: 
events ( system states) will appear (will be taken) with 

probabilities 

measurement:
if you learn that event (  ) appeared (system state has 

been taken) then you will gain “average information” (through 
many measurement repetitions) as 

(denoted as Shannon information)
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entropy and Information

measuring statistical events and average information gain

example: coin flipping; head ( 1) or tail ( 2)? 
equal probability for outcome: 1 = 2 = 0.5

measurement  head  information gain I = 1

and with probabilities:
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linear methods for estimating entropies

recall: Fourier transform and Parseval’s theorem (see Linear Methods)
with normalized power spectrum

we can estimate the entropy of the relative spectral density as:

characterizes homogeneity of power spectrum:
is minimum for line spectra (single Fourier component)
is maximum for broad-band spectra (white noise)
for chaotic dynamics? (looks like white noise)

need other methods to characterize entropy of chaotic dynamics
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entropy and Information

Given:
- measured data follows some probability distribution
- transitions between successive data points occur with well-defined

probabilities

Qs:
- if you have performed exactly one measurement, how much do you learn  

about the state of a system?
- if you have observed the entire past of a system, how much information 

do you have about future observations?

As:
can be found with generalized Rényi entropies
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generalized entropies static distributions

order- Rényi entropies

… characterize the amount of information needed to specify the 
value of an observable with a certain precision if only the probability 
density is known that observable has value x.

Idea: 
- partition phase space into disjoint hypercubes (boxes) of side 
length  (set of all these hypercubes is called a partition P)

- estimate probability j to find state x in box 
- define order- Rényi entropy for partition P  as:
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generalized entropies static distributions

order- Rényi entropies

for = 1, we derive (L’Hôpital’s rule) the Shannon entropy:

which is the only Rényi entropy that is additive:

the Rényi entropy of a joint process is the sum of the entropies of the 
independent processes

(cf. mutual information)
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generalized entropies static distributions

example: Rényi entropy of a uniform distribution

given: probability density

partition the unit interval into N partitions of length

we find:

- all order- entropies are the same 

(due to the homogeneity of the uniform distribution)

- the better you resolve the real numbers by the partition, the more 
information you gain 
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generalized entropies and dimensions

relationship: order- entropies and order- dimensions

- disjoint vs. non-disjoint partitioning

dimensions are the scaling exponents of the Rényi entropies 
computed for equally-sized partitions as functions of  and in 
the limit  → .
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generalized entropies

so far: entropies for static distributions

- can characterize attractor “as a whole”
- similar to dimension  no further gain of information
- no information about dynamics on the attractor

idea: 
- consider entropies for transition probabilities
- characterize flow of information from small to large scales
(typical for chaotic systems)
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generalized entropies Kolmogorov-Sinai entropy

- partition m-dimensional phase space into disjoint hypercubes  

(boxes) of side length  m

- let denote the joint probability that state X(t = 1) is in box i1,
state X(t = 2) is in box i2, etc., and that state X(mt) is in box im

- define block-entropies of block-size m as:
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generalized entropies Kolmogorov-Sinai entropy

for m  , block-entropies are related to order- entropies as:

the supremum indicates: maximize over all possible partitions P, and 

implies the limit  → 

h0 is called topological entropy (also abbreviated with 0)
h1 is called Kolmogorov-Sinai entropy (also abbreviated with 1)
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generalized entropies Kolmogorov-Sinai entropy

what do order- entropies and order- dimensions characterize?

topological entropy and Hausdorff dimension

0 (or 0) counts number of different orbits

0 counts number of non-empty boxes

Kolmogorov-Sinai entropy and information dimension

1 (or 1) is a measure for the average rate of loss of information
loss about a system state

1 is a measure for a gain of information when findings a state in a     
given box 
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entropies from time series

entropies provide important information on topology of folding 
processes, disorder, chaoticity, and predictability

estimating order-q entropies from data is hard, particularly for
high-dimensional systems (require more data than dimensions or
Lyapunov exponents)

taking the limit   is difficult

box-counting (evaluate -dimensional histograms) is most direct 
approach but turned out to be impractical

alternative ansatz: importance sampling
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entropies from time series correlation entropy

Grassberger, P. & Procaccia, I. Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A, 28(4), 2591. 1983

idea: 

- instead of using uniformly distributed partitions of phase space
center partitions (boxes with fixed ) on phase-space vectors

- use correlation sum (see Dimensions) to derive
correlation entropy 2
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with order- correlation sum

we find for 

in general, we have for 

if the systems exhibits a scaling region, we have
we can then find correlation entropy from

entropies from time series correlation entropy
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entropies from time series correlation entropy
pros and cons of correlation entropy

- conceptually easy 
- quickest to calculate

- requires existence of scaling region (independent on )
(if you can’t find a scaling region do not apply this method!)

- needs lots of data 
(you loose -h neighbors when going from to 


check robustness
constancy for a range of  values and embedding dimensions
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entropies from time series example: Hénon map

C2

K2

literature (m  ):
K2 ~ 0.33
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entropies from time series example: white noise

C2

K2

difficult to identify 
scaling region

no constancy
for range of  values
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entropies from time series example: EEG data

healthy subject epilepsy patient
seizure-free interval

epilepsy patient
seizure
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entropies from time series example: EEG data

C2

K2
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entropies what can go wrong?

field applications

- number of data points (lim N   and  )

- data precision 
adopt to requirement of small -neighborhood

- strong correlations in data (sampling interval)
use Theiler correction (see Dimensions)

- noise, filtering
similar impact as with Dimensions and Lyapunov exponents

- identifiable scaling region
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entropies Interpretation

• in general, we have: q’ q for 

• disorder, chaoticity of a system and type of the dynamics:

: chaos, unstable dynamics
: regular dynamics
: noise

• average rate of loss of information due to action of nonlinearity

• prediction horizon:
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Pesin’s identity

relationship between entropy and Lyapunov exponents

- entropy characterizes average rate of loss of information loss about 
a system state

- Lyapunov exponents characterize exponential divergence of initially 
close system states

Pesin’s identity:

Ya. B. Pesin, “Characteristic Lyapunov exponents and smooth ergodic theory”, Uspekhi Mat. Nauk, 32:4(196), 1977
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Pesin’s identity

relationship between entropy and Lyapunov exponents

consistency checks for time-series analysis

estimate 1 from sum over all positive Lyapunov exponents

note that

due to q’ q for 

we have

compare with 2 estimate from correlation sum
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