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Fundamentals of Analyzing Biomedical Signals Surrogates

Brief Recap: Dynamical Invariants and Real-World Data

When analyzing time series from real-world systems

- many prerequisites can not strictly be fulfilled

- limited significance of dynamical invariants

- cannot strictly proof(!) chaos, nonlinearity, deterministic structure

- need to validate assumptions

(e.g. given a nonlinear system  dynamics also nonlinear?)

→ need other methods to 
- test for determinism 
- test for nonlinearity
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testing for nonlinearity statistical methods

higher-order moments of amplitude distribution
(see Linear Methods)

Gaussian distribution hints at linearity

deviations may due to:

- linear dynamics with non-Gaussian distributed amplitudes
(skewness, kurtosis)

- linear dynamics observed with nonlinear measurement 
function  static transformation  static nonlinearity

- nonlinear dynamics
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impact of nonlinear measurement function
testing for nonlinearity statistical methods
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testing for nonlinearity methods in time domain

decay of autocorrelation
(see Linear Methods)

slow decay hints at long-term correlations in data 

deviations may due to:

- non-stationary dynamics
- nonlinear dynamics
- both

indication for nonlinearity if
caveats: 

- autocorrelation of chaotic dynamics decays rapidly to zero
- linear methods cannot distinguish between chaos and noise



6

Fundamentals of Analyzing Biomedical Signals Surrogates

testing for nonlinearity methods in time domain

time reversibility

regular linear processes are time-reversible

extension (Weiss theorem):
linear Gaussian stochastic processes are time-reversible

caveat: can not invert theorem !

there are time-reversible nonlinear processes
there are time-reversible non-Gaussian linear processes

simple test for “weak” nonlinearity (deviation from time-reversibility):

G. Weiss, Time-Reversibility of Linear Stochastic Processes. J. App. Prob, 12, 831, 1975 
T. Schreiber and A. Schmitz, Discrimination power of measures for nonlinearity in a time series, Phys. Rev. E 55, 5443, 1997
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testing for nonlinearity methods in time domain

time reversibility

some examples:

white noise  (1) =  0.00
Hénon system  (1) = -0.34
Lorenz system  (1) = -0.002

normal EEG  (1) = -0.17
patient EEG  (1) = -6.24
seizure EEG  (1) = -214.02

nonlinear 
or
non-stationary?
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testing for nonlinearity

statistical methods and methods in time domain:

- mostly “static” properties given by amplitude distribution

- time reversibility not unique

- interpretability

- poor discriminatory power
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testing for nonlinearity methods in phase space

time reversibility:

“a time series v(t) is time-reversible, if the probability density function
(v) of phase-space vectors is invariant under time reversal for all 
embedding dimensions and delays”

reconstruct phase space:

show invariance with

C. Diks et al., Phys Rev E 53, 2169, 1996; M. van der Heyden et al., Phys Lett A 216, 283, 1996
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testing for nonlinearity methods in phase space

original and time-reversed attractor

Lorenz system Hénon system

requires sensitive tests to prove invariance
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testing for nonlinearity methods in phase space

BDS test:

initially used to improve predictability of stock prices

method is based on correlation sum: 

for uncorrelated  (independent irregularly distributed) data, we have:

any kind of (linear/nonlinear) correlation implies:

W.A. Brock, W.D. Dechert, J.A. Scheinkman & B. LeBaron (1988), Dept.of Economics, University of Wisconsin Press, Madison
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testing for nonlinearity methods in phase space

BDS test:

test is not applied to original time series, since correlations are 
known trivially (power spectrum, autocorrelation)

instead, find optimal AR(k) model for time series

if model describes the data “sufficiently well”
- “innovations” i are independent (i.i.d.)
- BDS test positive
- hint for linearity
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testing for nonlinearity

methods in phase space:

- mostly “static” properties given by probability density function

- time reversibility not unique

- interpretability (binary decision (y/n) only)

- poor discriminatory power

- do not allow one to judge whether dynamical invariants
characterize nonlinear deterministic structures
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testing for nonlinearity

complex
dynamical

system

time series
of

observable

dynamical
invariants 
(D, K, 1, …)

nonlinearity

is this reliable ?
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testing for nonlinearity a more reliable ansatz

complex
dynamical

system

time series
of

observable

dynamical
invariants 
(D, K, 1, …)

hint for
nonlinearity

significant 
deviation 

T. Schreiber and A. Schmitz, Surrogate Time Series, Physica D 142, 346, 2000

compare with
distribution of  for 

linear models
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testing for nonlinearity a more reliable ansatz

complex
dynamical

system

time series
of

observable

dynamical
invariants 
(D, K, 1, …)

hint for
nonlinearity

significant 
deviation 

T. Schreiber and A. Schmitz, Surrogate Time Series, Physica D 142, 346, 2000

compare with
distribution of  for 

linear models

problems:
- distribution of  for linear models a priori unknown
- only one time series (finite, limited precision, …)
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testing for nonlinearity with surrogates

T. Schreiber and A. Schmitz, Surrogate Time Series, Physica D 142, 346, 2000

approaching the problem with hypothesis testing:

1. define appropriate null hypothesis:
e.g. “the data have been generated by some linear, 

stochastic, Gaussian, stationary process”

2. build surrogate time series that have the same statistical
properties as the original time series except nonlinearity

3. estimate dynamical invariant for original time series and a   
surrogate ensemble

4. apply robust test statistics to reject / confirm null hypothesis
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testing for nonlinearity with surrogates

building surrogate time series:

typical realizations

- require explicit model equations
- derive model parameters from time series
- build surrogates via Monte-Carlo realizations

constrained realizations (bootstrapping)

- phase randomization (FT)
- amplitude-adjusted phase randomization (AAFT)
- iteratively amplitude-adjusted phase randomization (IAAFT)
- random shuffling (RS)
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testing for nonlinearity with surrogates

building FT surrogate time series

Idea: dynamical nonlinearity associated with phase changes

null hypothesis:
the data have been generated by a linear, stochastic, stationary 
process with Gaussian distributed amplitudes and possibly 
observed through some (static) nonlinear measurement function

approach:

(1) Fourier-transform of original time series

(2) replace phases by random numbers from [0,2)
(preserves amplitude spectrum)

(3) inverse Fourier-transform

Pijn, J. P. Diss Amsterdam 1991;
Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. and Farmer, J.D. Testing for nonlinearity in time series: the method of surrogate data. Physica D, 58, 77, 1992
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testing for nonlinearity with surrogates

building FT surrogate time series examples
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testing for nonlinearity with surrogates

building FT surrogate time series: examples
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testing for nonlinearity with surrogates

building FT surrogate time series: summary

properties of phase-randomized surrogates:

- amplitude distribution and Fourier spectra of original time series and
surrogate time series identical
(with Wiener-Khinchine theorem: identical autocorrelation functions)

- means and standard deviations of amplitude distributions identical

- shape of distributions may vary

caveat: - FT surrogates have Gaussian distributed amplitudes! 
- can lead to false detections of nonlinearity!
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testing for nonlinearity with surrogates

building AAFT surrogate time series:

Idea: dynamical nonlinearity associated with phase changes

null hypothesis:
the data have been generated by a linear, stochastic, stationary 
process with arbitrary amplitude distribution and possibly 
observed through some (static) nonlinear measurement function

approach:

(1) generate sequence of Gaussian distributed random numbers 

(2) generate FT surrogate of that sequence

(3) rescale amplitudes of surrogate using the rank-ordering of
amplitudes of original time series

J. Theiler; D. Prichard "Constrained-realization Monte-Carlo method for hypothesis testing". Physica D. 94, 221, 1996.
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testing for nonlinearity with surrogates

building AAFT surrogate time series examples
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testing for nonlinearity with surrogates

building AAFT surrogate time series: examples

o
rig

in
a

l t
im

e 
se

ri
es

A
A

F
T

 s
ur

ro
ga

te

healthy subject
epilepsy patient

seizure-free interval
epilepsy patient

seizure



26

Fundamentals of Analyzing Biomedical Signals Surrogates

testing for nonlinearity with surrogates

building AAFT surrogate time series: summary

properties of amplitude-adjusted phase-randomized surrogates:

- same as FT surrogates but amplitude distribution optimally adjusted    
to the one of original time series

- Fourier spectrum optimally adjusted for N and weakly correlated    
data only 

caveat: - Fourier spectrum too flat (almost white) in case of finite data 
and strong correlations!

- can lead to false detections of nonlinearity!
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testing for nonlinearity with surrogates

building IAAFT surrogate time series:

Idea: dynamical nonlinearity associated with phase changes

null hypothesis:
the data have been generated by a linear, stochastic, stationary 
process with arbitrary amplitude distribution and possibly 
observed through some (static) nonlinear measurement function

approach:

(1) iterative version of AAFT 

(2) repeat until Fourier spectrum optimally adjusted; 
stopping criterion after i iterations, e.g.:

T. Schreiber; A. Schmitz. "Improved Surrogate Data for Nonlinearity Tests". Phys. Rev. Lett. 77, 635, 1996
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testing for nonlinearity with surrogates

building IAAFT surrogate time series examples
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testing for nonlinearity with surrogates

building IAAFT surrogate time series: examples
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testing for nonlinearity with surrogates

building IAAFT surrogate time series: summary

properties of iterative amplitude-adjusted phase-randomized 
surrogates:

- same as AAFT surrogates but amplitude distribution and Fourier    
spectrum optimally adjusted to the ones of original time series

- note: Fourier spectrum optimally adjusted for N

caveat: avoid over-iteration! 
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testing for nonlinearity with surrogates

comparing FT, AAFT, IAFFT surrogate time series:
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testing for nonlinearity with surrogates

comparing FT, AAFT, IAFFT surrogate time series:
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testing for nonlinearity with surrogates

comparing FT, AAFT, IAFFT surrogate time series:
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testing for nonlinearity with surrogates

comparing FT, AAFT, IAFFT surrogate time series:



35

Fundamentals of Analyzing Biomedical Signals Surrogates

testing for nonlinearity with surrogates

things to bear in mind when generating FT, AAFT, IAFFT surrogate 
time series:

“end-point-mismatch” (or edge effect):

- need continuous time series for Fourier 
transform   

- usually employ windowing or zero-padding
in case of finite data 

- can’t use this here; 
need invertibility of Fourier transform!

- end-point-mismatch induces a more 
white Fourier spectrum

- possible ansatz: shift time series until 
mismatch minimized

original

surrogate

original

surrogate

with end-point-mismatch

end-point-mismatch minimized

T. Schreiber and A. Schmitz, Surrogate Time Series, Physica D 142, 346, 2000
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testing for nonlinearity with surrogates

building surrogate time series: random shuffling

null hypothesis:
no nonlinear deterministic structure in variability of periodicities

ansatz:
identify recurring patterns and perform random shuffling

field of applications: near-periodic data
(e.g. sun spots, seizure EEG, electrocardiogram (ECG)

from J. Theiler On the evidence for how-dimensional chaos in an epileptic electroencephalogram. Phys. Lett. A 196, 335, 1995
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testing for nonlinearity with surrogates

other methods to build surrogate time series:

- use wavelet transform instead of Fourier transform (other basis 
function; more localized in time- and frequency domain)

- include trends in null hypothesis
- include non-stationarity in null hypothesis
- extensions to more general linear processes 
- testing separately for dynamical and static nonlinearities (avoid 

non-detections of nonlinearities)
- surrogates for sparsely quantized time series
- multifractal surrogates
- iterative digitally filtered shuffled surrogates
- …

G. Lancaster et al. Surrogate data for hypothesis testing of physical systems. Physics Reports 748, 1, 2018
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testing for nonlinearity with surrogates

rejecting/accepting null hypothesis (non-parametric vs parametric tests)

how to design a test and how many surrogates do you need?

parametric test (probably most intuitive and easy, but not recommendable!)

- estimate dynamical invariant  for original time series (O) and a Ns

surrogates (S)
- estimate mean and variance of  for surrogates and estimate
significance (s) of deviation by “number of sigmas”:

- caveat: this test assumes  to be Gaussian distributed and does not 
provide you with an estimate of the number Ns of surrogates 
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testing for nonlinearity with surrogates

rejecting/accepting null hypothesis (non-parametric vs parametric tests)

how to design a test and how many surrogates do you need?

non-parametric (robust) test

- chose probability  to falsely reject null hypothesis (e.g., 0.05)
significance level p = 1 - 

- estimate dynamical invariant  for original time series (O) and Ns surrogates (S)

- one-sided test (e.g., only a given value of  is of interest)
generate Ns = (1/ -1) surrogates
 is probability that original data take a given value of  by chance

- two-sided test (e.g., min or max value of  is of interest)
generate Ns = (2/ -1) surrogates
 is probability that original data take either min or max of  by chance
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robustly testing for nonlinearity with surrogates

choose significance level
p = (1- ) x 100%

dynamical invariant 
differs for original and surrogates

original
time series

Ns = (1/ -1) surrogates (one-sided)
Ns = (2/ -1) surrogates (two-sided)
(e.g., Ns = 19 resp. 39 for p = 95 %

reject null hypothesis:
indication for nonlinearity

dynamical invariant  does not
differs for original and surrogates

accept null hypothesis:
no indication for nonlinearity
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robustly testing for nonlinearity with surrogates

interpretation:

- statistical test only, it is not a proof for nonlinearity! 

- rejection of null hypothesis only provides necessary but not 
sufficient condition for dynamical invariant to indicate nonlinearity

- acceptance of null hypothesis does not indicate its correctness

- whenever a null hypothesis is rejected, it is always very important 
to keep in mind that the complementary hypothesis is very 
comprehensive and might include many different reasons that are 
possibly responsible for this rejection

- consider including other (statistical) properties of your time series 
into the null hypothesis
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testing for nonlinearity what can go wrong?

field applications

- all issues related to embedding

- all issues related to estimating a given dynamical invariant

- issues related to Fourier transform 
finite data, end-point-mismatch (shifting possible?, shortening?) 

- non-stationarity vs. nonlinearity
would need to include (all forms! of) non-stationarity in null

- how to treat singular (extreme) events?

- avoid wishful thinking!
(sometimes it’s just P2C2E*)

*process too complicated to explain: Iff in S. Rushdie: Haroun and the Sea of Stories. Granta Books, London (1990) 


