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Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions information-theory

basic idea: interaction  information flow 

- the “stronger” the information flow, the stronger the interaction
- information flow from one system to another indexes directionality

characterize information with Shannon entropy

p is the (normalized) probability for an event / state / amplitude /… 
to occur 

estimate probability with 

where N is the total number of events / states / amplitudes /… 



strength of interaction: mutual information

given systems X and Y, the mutual information is defined as:

information generated by system X is characterized 
by the Shannon entropy: 

joint information is characterized by the 
Shannon entropy:
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H(X,Y)

H(X) H(Y)
I(X,Y)
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measuring interactions information-theory

strength of interaction: relative entropy

relative entropy (also known as Kullback-Leibler divergence):

- characterizes the similarity between the probability distributions. 
- relative entropy is asymmetric:
- in general Hrel is positive, and zero for identical systems 

S. Kullback, R.A. Leibler. On information and sufficiency. Ann. Math. Stat. 22, 79, 1951.

 alternative definition of mutual information:

characterizes relative difference between respective probability 
density distributions and the joint distribution density
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strength of interaction: mutual information

properties of mutual information:
- symmetric: I (X, Y) = I (Y, X)
- I (X, Y) = 0 for independent (non-interacting) systems
- I (X, Y) = max for identical (fully synchronized) systems
- I (X, Y) increases monotonically with increasing coupling 
strength  data-driven estimator for strength of interaction

disadvantages:
- only considers (single/joint) probability density distributions
- no information about dynamics
- can not explicitly distinguish between information exchange
and joint information (e.g. due to common input or joint past)
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strength of interaction: mutual information

extensions:
time-delayed mutual information

(Kaneko, Physica D 23, 436, 1986)

partial (or conditional) mutual information
(S. Frenzel & B. Pompe, PRL 99, 204101, 2007)

- part of mutual information of two random quantities that 
is not contained in a third one

- similar to partial correlation
- can also detect directionality* H(X) H(Y)

H(X,Y,Z)

H(Z)

I(X,Y|Z)

H(X,Z) H(Y,Z)

* K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka & J. Bhattacharya. Causality detection based on information-theoretic 
approaches in time series analysis. Physics Reports, 441, 1-46, 2007
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direction of interaction: transfer entropy

aim: characterize flow of information between systems X and Y
idea: replace (static) probability density distributions by transition 

probability densities (cf. Entropies)
given: time series v: v1, v2, …, vN of some observable x and 

time series w: w1, w2, …, wN of some observable y

1) incorporate time-dependence by relating previous samples vi and 
wi to predict the next value vi+1 (cf. N. Wiener),

2) consider generalized Markov condition (p = transition probability 
density):

T. Schreiber, Measuring information transfer. Phys. Rev. Lett. 85, 461, 2000
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direction of interaction: transfer entropy

3) if systems X and Y independentMarkov condition fulfilled 

4) use relative entropy concept to quantify incorrectness of Markov 
condition; with this, transfer entropy is defined as:

(l,k) denote orders of Markov processes
TXY defined in complete analogy
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direction of interaction: transfer entropy

properties of transfer entropy
- can detect direction of information flow since
- unbounded, needs suitable definition of directionality, e.g.

- depends on coupling strength  data-driven estimator for 
direction of interaction

- for Gaussian distributed data, transfer entropy equals 
Granger causality

- similar to conditional mutual information 
(replace system Z by e.g., past of system Y)
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direction of interaction: transfer entropy

extensions:

- multivariate (partial) transfer entropy

- various estimation techniques

- estimators for transient signals* and delay-systems**

* H. Dickten, K. Lehnertz K. Identifying delayed directional couplings with symbolic transfer entropy. Phys Rev E 90, 062706, 2014
** M. Martini, TA Kranz, T Wagner, K Lehnertz K. Inferring directional interactions from transient signals with symbolic transfer entropy. Phys Rev E 83, 011919, 2011
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strength and direction of interaction

how to estimate probability density distributions and the joint 
distribution densities from time series?

- counting (cumbersome)
- various binning techniques
- nearest neighbor estimators (e.g. Kozachenko-Leonenko)
- correlation sum (via phase-space embeddings)
- symbolization (e.g. based or permutation entropy*)

* C. Bandt, B. Pompe. Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett., 88, 174102, 2002
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strength and direction of interaction an example

estimators based on the concept of symbolic dynamics and on
symbolization

symbolic dynamics: modeling a smooth dynamical system by a 
discrete space consisting of infinite sequences of symbols, each of 
which corresponds to a state of the system, with the dynamics 
(evolution) given by the shift operator

symbolization: generate symbols via delay embedding

where

 symbol
* C. Bandt, B. Pompe. Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett., 88, 174102, 2002
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strength and direction of interaction an example

embedded data: (  3,   5,   9)   (10,   1,   6)

symbols  (1, 2, 3)         (1, 3, 2)

permutation entropy:

normalization:

H  0 for deterministic systems, H  1 for stochastic systems
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strength and direction of interaction an example

given time series of systems X and Y:
- estimate permutation entropy from windowed data
- investigate changing tendency of  permutation entropies

- characterize in-step behavior of pairs of permutation entropies

-  = 0 for independent systems;   1 for synchronized 
systems;  increase monotonically with increasing coupling 
strength  data-driven estimator for strength of interaction

Z.H. Liu. Measuring the degree of synchronization from time series data. Europhys. Lett., 68: 19, 2004
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strength and direction of interaction an example

given time series of systems X and Y:
- for estimating probability density distributions and the joint 
distribution densities:

replace probabilities of data with probabilities of symbols
count symbols ( very fast)

- symbolic transfer entropy:

- see properties of transfer entropy
- easy-to-use data driven estimator for direction of interaction

M. Staniek, K. Lehnertz. Symbolic Transfer Entropy. Phys. Rev. Lett. 100, 158101, 2008 
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strength and direction of interaction an example

M. Staniek, K. Lehnertz. Symbolic Transfer Entropy. Phys. Rev. Lett. 100, 158101, 2008 

time series 2

symbol sequence 2
iY

time series 1

symbol sequence 1
iX

transition probability p
p

A C B D C A

D B B A D C
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strength and direction of interaction an example

diffusively coupled Rössler oscillators 
(100 realizations)

direction of interaction

strength of interaction

coupling strength c
M. Staniek, K. Lehnertz. Symbolic Transfer Entropy. Phys. Rev. Lett. 100, 158101, 2008 
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strength and direction of interaction an example

diffusively coupled Rössler-Lorenz oscillators 
(100 realizations of driver-responder system)

direction of interaction

strength of interaction

coupling strength cM. Staniek, K. Lehnertz. Symbolic Transfer Entropy. Phys. Rev. Lett. 100, 158101, 2008 
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strength and direction of interaction an example
driver-responder relationships in EEG dynamics from epilepsy patients

M. Staniek, K. Lehnertz. Symbolic Transfer Entropy. Phys. Rev. Lett. 100, 158101, 2008 
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strength and direction of interaction

permutation-entropy-based estimators

advantages
- easy-to-use, fast-to-calculate
- high robustness against noise (symbolization)

disadvantages
- symbolization may lead to loss of information
- require appropriate choice of embedding parameter
- choice of window-size, finiteness of available symbols 
- “faster” system (eigen-frequency, noise)  driver

(need reliable surrogate test for directionality)
- may be fooled by (unobserved) third system


