
Fundamentals of Analyzing Biomedical Signals Interactions

Measuring Interactions

from Time Series

state-space*-based techniques
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*same as phase-space but used here to avoid confusion with “phase”
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Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions state-space

basic idea: interaction  dynamics on attractor  synchronization

- the “stronger” the interaction, the more similar are the attractors
- testing for conditional changes of attractor properties indexes 
directionality

more comprehensive characterization of interacting nonlinear systems

need to extend the classical concept of synchronization
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synchronization

- requires some (self-sustained) oscillatory behavior of 
autonomous systems

- does not necessarily indicate synchronous motion 

- requires weak coupling 
strong coupling  identical motion  not of interest

(natural phenomena  weak coupling!)

- is a dynamical phenomenon, not a state !

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions state-space



complete (or identical) synchronization

lag synchronization

phase synchronization
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measuring interactions state-space

given observables x(t) and y(t) of systems X and Y
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measuring interactions state-space

complete synchronization: 
identical systems or infinitely strong coupling

lag synchronization: 
for 0: cross-over to complete synchronization

phase synchronization:
intuitively: phase sync.  lag sync.  complete sync.
but: too many counterexamples

these concepts do not capture interactions between attractors
 need another concept
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measuring interactions state-space

Fujisaka H, Yamada T. Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys 69, 32, 1983
Afraimovich VS, Verichev NN, Rabinovich MI. Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quant. Electr. 29, 795, 1986
Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HD. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev E 51, 980, 1995

given observables x(t) and y(t) of systems X and Y

generalized synchronization (GS)

there is a functional such that (after a transitory evolution from 
appropriately chose initial condition), we have:

the dynamical state of one of the systems is completely determined 
by the state of the other

trajectory of joint system confined to sub-manifold of joint state-space
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measuring interactions state-space

generalized synchronization

- if systems are mutually coupled has to be invertible 
- for a driver-responder configuration does not need to be invertible
- if is the identity, we have identical synchronization

- one can find phase synchronization in case of generalized 
synchronization

but:
- generalized synchronization is not a necessary condition for 
phase synchronization

since 2000: attempts to find a unifying definition for synchronization 

e.g. Brown R, Kocarev L. A unifying definition of synchronization for dynamical systems. Chaos 10, 344, 2000
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measuring interactions state-space

identifying generalized synchronization

Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821, 1990
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measuring interactions state-space

identifying generalized synchronization an example

a= 6
a= 10

Quiroga RQ, Arnhold J, Grassberger P. Learning driver-response relationships from synchronization patterns. Phys. Rev. E. 61, 5142, 2000
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uncoupled coupled

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions state-space

identifying generalized synchronization

 = ?
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measuring interactions state-space

identifying generalized synchronization from time series

when assuming existence of functional

- project attractors onto some (joint) plane (look for GS)
- mutual false nearest neighbors 

(test for smoothness, continuity)
- epsilon-delta-statistics (*) 

(test for continuity, invertibility, differentiability, rang invariance)
- mutual nonlinear prediction (*)

when not assuming existence of functional

- nonlinear interdependencies

(*) not discussed here; see LM Pecora et al., Phys Rev E 52, 3420, 1995 and SJ Schiff et al, Phys Rev E 54, 6708, 1996 
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measuring interactions state-space

from: Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HD. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev E 51, 980, 1995

identifying generalized synchronization from time series
look for GS

example: strongly, unidirectionally coupled Rössler systems (large c)
 complete GS   = id
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measuring interactions state-space

identifying generalized synchronization from time series
look for GS

example: weakly, unidirectionally coupled Rössler systems (small c)
 incomplete GS    id (?)

from: Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HD. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev E 51, 980, 1995
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measuring interactions state-space

identifying generalized synchronization from time series
look for GS

example: strongly, unidirectionally coupled Rössler systems (large c)
and some nonlinear transformation of responder system
 complete GS   = ? 

from: Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HD. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev E 51, 980, 1995
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measuring interactions state-space

identifying generalized synchronization from time series
look for GS

example: weakly, unidirectionally coupled Rössler systems (small c)
and some nonlinear transformation of responder system
 incomplete GS   = ? 

from: Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HD. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev E 51, 980, 1995
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measuring interactions state-space

identifying generalized synchronization from time series
look for GS

example: strongly, unidirectionally coupled Rössler systems (large c)
and some nonlinear transformation of delayed responder system
 complete GS   = ? 

from: Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HD. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev E 51, 980, 1995



17

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions state-space

identifying generalized synchronization from time series
look for GS

example: weakly, unidirectionally coupled Rössler systems (small c)
and some nonlinear transformation of delayed responder system
 incomplete GS   = ? 

from: Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HD. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev E 51, 980, 1995
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measuring interactions state-space

identifying generalized synchronization from time series
look for GS

projecting attractors to some (joint) plane

- can not sufficiently identify properties of 
- suitable for strong-coupling-limit and for some conditions only
- misinterpretations due to nonlinear or delayed couplings
- other confounders?

- need more appropriate ansatz 



Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions state-space

identifying generalized synchronization from time series

mutual false nearest neighbors

consider driver-responder system with observables x(t) and y(t) of 
driver X and responder Y

if holds, 
we find:

closeness in state-space of 
driver 
implies  
closeness in 
state-space of responder

X Y

xn
yn
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measuring interactions state-space

identifying generalized synchronization from time series

mutual false nearest neighbors

if holds, we have (D is Jacobian matrix)

and

NND (NNR) denote the number of nearest neighbors of state vector
xn = x(tn) (y analogous) of driver (responder) system

need (appropriately normalized) parameter that quantifies deviation
from the above assumption

from: Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HD. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev E 51, 980, 1995
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measuring interactions state-space

identifying generalized synchronization from time series

mutual false nearest neighbors

- appropriate delay-embedding 
- nearest neighbors from closest distance to reference state
- average over (sufficiently) many reference states 

from: Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HD. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev E 51, 980, 1995
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identifying generalized synchronization from time series
mutual false nearest neighbors

example: unidirectionally coupled Rössler systems and some 
nonlinear transformation of responder system

from: Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HD. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev E 51, 980, 1995

weak coupling

strong coupling

mD
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measuring interactions state-space

identifying generalized synchronization from time series
mutual false nearest neighbors

example: unidirectionally coupled Rössler systems and some 
nonlinear transformation of delayed responder system

from: Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HD. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev E 51, 980, 1995

weak coupling

strong coupling

mD
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measuring interactions state-space

identifying generalized synchronization from time series
mutual false nearest neighbors

example: unidirectionally coupled Rössler systems and some 
nonlinear transformation of delayed responder system

from: Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HD. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev E 51, 980, 1995

coupling strength
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measuring interactions state-space

identifying generalized synchronization from time series
mutual false nearest neighbors

PMFNN increases with coupling strength
 data-driven estimator for strength of interaction

symmetric ansatz
 no indication for direction of interactions

ansatz assumes existence of , well-defined properties of 
(smooth, differentiable, invertible) for strong coupling only! 

sensitive to noise,  too many parameters
 not well suited for time series analysis



26

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions state-space

identifying generalized synchronization from time series
nonlinear interdependence

Qs:

why assume existence of ? (necessary/relevant?)

weak coupling? (is more interesting case)

w.r.t. time series analysis: influence of noise?

existence of (unknown) third system, driving the others?

why assume determinism? (stochastic processes)
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measuring interactions state-space

identifying generalized synchronization from time series
nonlinear interdependence

given observables x(t) and y(t) of systems X and Y

appropriate state-space reconstruction (time-delay embedding)

choose reference vectors xn=x(tn) and yn=y(tn) 

identify their k nearest neighbors (-environment, Euclidean distance)
and denote their indices by rn,j and sn,j,  j=1, …, k

Arnhold J, Grassberger P, Lehnertz K, Elger CE. A robust method for detecting interdependences: application to intracranially recorded EEG. Physica D 134,:419, 1999
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measuring interactions state-space

identifying generalized synchronization from time series
nonlinear interdependence

uncoupled strong coupling

reference vectors connected by red lines; neighbors connected by yellow lines

Arnhold J, Grassberger P, Lehnertz K, Elger CE. A robust method for detecting interdependences: application to intracranially recorded EEG. Physica D 134,:419, 1999
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measuring interactions state-space

identifying generalized synchronization from time series
nonlinear interdependence

define “true” and “false” distances for system X (analogously for Y)

observations:

if X and Y strongly related:

if X and Y independent:

Arnhold J, Grassberger P, Lehnertz K, Elger CE. A robust method for detecting interdependences: application to intracranially recorded EEG. Physica D 134,:419, 1999
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identifying generalized synchronization from time series
nonlinear interdependence

define “local” and “global” interdependence measure for system X
(analogously for Y)

- measures confined to unit interval (S=1 strong interdependence)
- asymmetry reflects different levels of complexity   
of systems

- no claims about causality  active-passive relationship

Arnhold J, Grassberger P, Lehnertz K, Elger CE. A robust method for detecting interdependences: application to intracranially recorded EEG. Physica D 134,:419, 1999
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measuring interactions state-space

identifying generalized synchronization from time series
nonlinear interdependence

alternatives and extensions

J. Arnhold, P. Grassberger, K. Lehnertz, C.E. Elger , Physica D 134,:419, 1999; R.G. Andrzejak, A. Kraskov, H. Stögbauer, F. Mormann, T. Kreuz, Phys. Rev. E 68, 066202, 
2003; D. Chicharro, R. G. Andrzejak, Phys. Rev. E 80, 026217, 2009
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measuring interactions state-space

identifying generalized synchronization from time series
nonlinear interdependence

symmetric and antisymmetric estimators for strength and direction of 
interaction:



33

Fundamentals of Analyzing Biomedical Signals Interactions
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identifying generalized synchronization from time series
nonlinear interdependence

comparison with phase-based estimators

coupling strength c coupling strength c

phase state-spacediffusively coupled  Rössler oscillators
identical eigen-frequencies
50 realizations, 4096 data points
embedding dimension 5
embedding delay 1

data points data points

Osterhage, H., Mormann, F., Wagner, T., & Lehnertz, K. Int. J. Neural Syst., 17(03), 139-148 (2007)

no driver
incorrect identification

no driver
correct identification
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identifying generalized synchronization from time series
nonlinear interdependence

comparison with phase-based estimators

Osterhage, H., Mormann, F., Wagner, T., & Lehnertz, K. Int. J. Neural Syst., 17(03), 139-148 (2007)

diffusively coupled  Rössler oscillators
different eigen-frequencies
50 realizations, 4096 data points
embedding dimension 7
embedding delays (1, 30) 

coupling strength c coupling strength c

phase state-space

X is driver
correct identification X is driver

incorrect identification
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measuring interactions state-space

identifying generalized synchronization from time series
nonlinear interdependence

comparison with phase-based estimators

Osterhage, H., Mormann, F., Wagner, T., & Lehnertz, K. Int. J. Neural Syst., 17(03), 139-148 (2007)

diffusively coupled  Rössler oscillators
different eigen-frequencies
50 realizations, 4096 data points
embedding dimension 7
embedding delays (1, 30)

impact of frequency mismatch

phase-based:
the fast system appears to drive the other system

state-space-based:
appears unaffected

phase state-space
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measuring interactions state-space

identifying generalized synchronization from time series
nonlinear interdependence

comparison with phase-based estimators

Osterhage, H., Mormann, F., Wagner, T., & Lehnertz, K. Int. J. Neural Syst., 17(03), 139-148 (2007)

diffusively coupled  Rössler (driver) –
Lorenz (responder) oscillators
50 realizations, 16384 data points
embedding dimension 7
embedding delay 1 

coupling strength c coupling strength c

phase state-space

correct identification?
almost independent on c?

no identification
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measuring interactions state-space

identifying generalized synchronization from time series
nonlinear interdependence

improved estimators (M and L)
diffusively coupled  
Lorenz oscillators

1000 realizations
embedding dimension
+
embedding delay optimal
Theiler correction

different noise 
contaminations
left: X only
middle: X and Y
right: Y only
(colors)

correct identification:
A > 0

coupling strength coupling strength

D. Chicharro, R. G. Andrzejak, Phys. Rev. E 80, 026217, 2009



38

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions state-space

identifying generalized synchronization from time series
nonlinear interdependence

what can go wrong?

inappropriate normalization (translation, rotation, …)
all issues related to embedding
strongly coupled systems (direction of interaction)
not controlling for strong correlations in data 
(see Theiler correction)

not accounting for different “complexities” 
(eigen-frequencies, number of degrees of freedom, noise, …)
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strength and direction of interaction

state-space-based estimators

advantages
- more general concept 
- can capture all forms of synchronization
- high / moderate robustness against noise

disadvantages
- require appropriate choice of algorithmic parameter
- “faster” system  driver

(need reliable surrogate test for directionality)
- may be fooled by (unobserved) third system
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strength of interaction comparison with other approaches

test bed
coupled Hénon systems, Rössler oscillators, and Lorenz oscillators
optimally chosen algorithmic parameters
4096 data points
surrogate correction whenever necessary

measures:
linear cross correlation
mutual information
phase-based approaches (Hilbert transform, wavelet transform)
nonlinear interdependency
event synchronization (see R.Q. Quiroga, T. Kreuz, P. Grassberger, Phys. Rev. E 66, 041904, 2002)

Kreuz T, Mormann F, Andrzejak RG, Kraskov A, Lehnertz K, Grassberger P. Physica D, 225, 29, 2007
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strength of interaction comparison with other approaches

Kreuz T, Mormann F, Andrzejak RG, Kraskov A, Lehnertz K, Grassberger P. Physica D, 225, 29, 2007

coupled Hénon systems
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strength of interaction comparison with other approaches

coupled Rössler oscillators

Kreuz T, Mormann F, Andrzejak RG, Kraskov A, Lehnertz K, Grassberger P. Physica D, 225, 29, 2007
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strength of interaction comparison with other approaches

coupled Lorenz oscillators

Kreuz T, Mormann F, Andrzejak RG, Kraskov A, Lehnertz K, Grassberger P. Physica D, 225, 29, 2007



44

Fundamentals of Analyzing Biomedical Signals Interactions
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strength of interaction comparison with other approaches

correlation between approaches

Kreuz T, Mormann F, Andrzejak RG, Kraskov A, Lehnertz K, Grassberger P. Physica D, 225, 29, 2007
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strength of interaction comparison with other approaches

there is no “best approach”

dependent on specific application

choose approach according to quality and type of data

even combinations of approaches might be useful

Kreuz T, Mormann F, Andrzejak RG, Kraskov A, Lehnertz K, Grassberger P. Physica D, 225, 29, 2007
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direction of interaction comparison with other approaches

test bed
coupled AR models, Hénon systems, Rössler-Lorenz oscillators, 
Rössler oscillators (large eigen-frequency mismatch), fishery model, 
two uncoupled systems driven by a third one
optimally chosen algorithmic parameters; 20.000 data points
surrogate correction whenever necessary

measures:
Granger causality (various approaches)
transfer entropy
nonlinear interdependency
predictability improvement (A. Krakovská and F. Hanzely, Phys. Rev. E 94, 052203, 2016)

Krakovská, A., Jakubík, J., Chvosteková, M., Coufal, D., Jajcay, N. Paluš, M., Phys. Rev. E, 97, 042207, 2018



47

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions state-space

direction of interaction comparison with other approaches

- results of different methods often contradicted each other

- methods differed considerably in their capability to reveal presence 
and direction of coupling and to distinguish causality from correlation

- outputs of methods difficult to compare
- low specificity was the problem of most methods

- choose the right method for a particular type of data
“simple” cases  linear methods
“complex” cases  information-theoretic and/or nonlinear methods

- blind application of any causality test easily leads to incorrect 
conclusions

Krakovská, A., Jakubík, J., Chvosteková, M., Coufal, D., Jajcay, N. Paluš, M., Phys. Rev. E, 97, 042207, 2018
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other ideas (for the sake of completeness)

from (auto) correlation sum

to cross-correlation sum

H. Kantz. Quantifying the closeness of fractal measures. Phys. Rev. E, 49, 5091, 1994
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other ideas

cross-correlation sum

identical systems if: 

need appropriate definition for
“similarity”

no information about dynamics

not well suited for time series
analysis

H. Kantz. Quantifying the closeness of fractal measures. Phys. Rev. E, 49, 5091, 1994

two Hénon systems
with slightly 
different control 
parameters
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other ideas

- dimension of interaction dynamics
- Hausdorff distance between attractors
- similarity of state-space densities (2 test)
- similarity based on cross-predictability 

 no or only restricted information about dynamics
 robustness, computational issues
 do not provide information about strength and direction of   

interaction


