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Testing for Interactions

from Time Series

bivariate surrogate techniques
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testing for interactions

system X system Y coupling

linear linear no coupling
nonlinear nonlinear no coupling

linear linear linear
linear nonlinear linear
nonlinear linear linear
nonlinear nonlinear linear

linear linear nonlinear
linear nonlinear nonlinear
nonlinear linear nonlinear
nonlinear nonlinear nonlinear

given time series of observables from two systems, X and Y

Qs: independent systems? (taking into account eigen-dynamics and 
type of coupling)



3

Fundamentals of Analyzing Biomedical Signals Interactions

testing for interactions

When analyzing bivariate time series from real-world systems

- often can not directly probe for interactions (active experiments)

- many prerequisites of analysis techniques can not strictly be fulfilled

- techniques may be fooled by asymmetries in properties of systems

- need to validate assumptions

- need to interpret values of some measure for strength/direction

→ need surrogate methods to test for interactions
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testing for interactions higher-order moments

higher-order moments for some estimators for strength of interaction 
can be derived to test for nonlinear dependence:

- (linear methods): coherence function k

- (phase-based methods): mean phase coherence R

disadvantages
consider static nonlinearities only (distinguishable from
nonlinear measurement function?)

other approaches:
employ bi-/multivariate surrogates
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strength of interaction estimated with coherence k

Q: does a given value of k indicate nonlinear dependence?

idea: estimate order-p spectra

relationships between (poly)spectra, cumulants, and statistical moments

C.L. Niklas & A.P. Petropulu: Higher-order spectral analysis: a nonlinear signal processing framework. Prentice Hall, New Jersey, 1993
T. Subba Rao & M.M. Gabr: An introduction to bispectral analysis and bilinear time series models. Lecture Notes in Statistics, vol. 24, Springer, Berlin, 1984

power spectrum p=2 cumulant p=2 statistical moment
variance

bispectrum p=3 cumulant p=3 statistical moment
skewness

trispectrum p=4 cumulant p=4 statistical moment
kurtosis

testing for interactions higher-order moments
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strength of interaction estimated with coherence k

extension for bivariate case with p=2

def: cross-bispectra and bicoherence (3.order coherence)

bicoherence 
is normalized cross-bispectrum (auto-, and cross-spectra)
is defined on unit interval
allows detection of quadratic phase-coupling

C.L. Niklas & A.P. Petropulu: Higher-order spectral analysis: a nonlinear signal processing framework. Prentice Hall, New Jersey, 1993
T. Subba Rao & M.M. Gabr: An introduction to bispectral analysis and bilinear time series models. Lecture Notes in Statistics, vol. 24, Springer, Berlin, 1984

testing for interactions higher-order moments
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strength of interaction estimated with coherence k

example: 3-wave system with quadratic phase coupling

w1 w1

w2w2

modulus of bicoherence phase of bicoherence

highly sensitive to noise
requires large number of data points
high computational cost

testing for interactions higher-order moments
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strength of interaction estimated with mean phase coherence R

Q: does a given value of R indicate nonlinear dependence?

idea: estimate higher-order moments of phase-difference distribution

general ansatz:

KV Mardia, P Jupp. Directional Statistics, John Wiley and Sons Ltd., 2000

testing for interactions higher-order moments
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strength of interaction estimated with mean phase coherence R

KV Mardia, P Jupp. Directional Statistics, John Wiley and Sons Ltd., 2000

testing for interactions higher-order moments



10

Fundamentals of Analyzing Biomedical Signals Interactions

bi-(multi-)variate surrogates

first ideas: extend concepts of (iteratively amplitude-adjusted) phase-
randomized surrogates (FT, IAAFT  MFT, MIAAFT)

given: simultaneously recorded time series, with zero mean 
and unit variance

assumption: dynamical nonlinearity associated with changes in 
phase difference

requirements: MFT surrogate must reproduce linear correlations within
and between time series (need to estimate auto- and 
cross-spectrum)
MIAAFT must, in addition, reproduce the respective
amplitude distributions

testing for interactions surrogates

Prichard & Theiler, PRL 73, 951, 1994; Schreiber & Schmitz, Physica D 142, 346, 2000
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bi-(multi-)variate surrogates

MFT null hypothesis: 
the data have been generated by linearly correlated, stochastic, 
stationary processes with Gaussian distributed amplitudes, and 
possibly observed through some (static) nonlinear measurement 
function

method:
- Fourier transform to preserve linear properties  

cross-spectrum (Wiener-Khinchin theorem: cross-correlation)
- randomize nonlinear properties

replace phase-differences with random numbers [0, 2)
- inverse transform 
- caveat: does “correlated” imply “coupling”?

testing for interactions surrogates
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bi-(multi-)variate surrogates

MIAAFT null hypothesis: 
the data have been generated by linearly correlated, stochastic, 
stationary processes with arbitrary amplitude distributions, and 
possibly observed through some (static) nonlinear measurement 
function

method (cf. IAAFT):
in addition, replace phase-differences with random numbers [0, 2) 
but preserve original phase-difference properties as best as possible
- slightly modify rank-sequence of phase-difference (additive     
perturbation)

- replacement of phase-differences in least-squares sense
- caveat: does “correlated” imply “coupling”?

testing for interactions surrogates
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MIAAFT surrogates examples

testing for interactions surrogates

Simultaneous surrogates for a bi-variate time series. The upper two panels show simultaneous 
recordings of the breath rate and the instantaneous heart rate of a human. The lower two panels 
show surrogate sequences that preserve the individual distributions and power spectra as well as 
the cross-correlation function between heart and breath rate. The most prominent difference 
between data and surrogates is the lack of coherence in the surrogate breath rate.

Cross-correlation functions for the bi-variate data shown in left Fig. (upper 
panel), and a surrogate that preserves the individual spectra and distributions 
as well as the relative Fourier phases (middle). The lower panel shows the 
same for surrogates prepared for each channel individually, i.e. without 
explicitly preserving the cross-correlation structure.
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bi-(multi-)variate surrogates

extension for near-coherent data:
coherent digitally filtered surrogate (CDF)

assumption: dynamical nonlinearity associated with properties of
coherence function

requirements:  CDF surrogate must preserve spectrum, cross-
spectrum, and coherence function

method: -generate frequency-dependent alternative 
coherence function and its inverse (filter function)

-multiply spectra with filter function

Dolan & Neimann, PRE 65, 026108, 2002

testing for interactions surrogates
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time-shifted (TS) time series as surrogates

TS null hypothesis: 
the data have been generated by uncoupled processes with 
arbitrary structure, and possibly observed through some (static) 
nonlinear measurement function

method:
- quasi-continuous time shifting or choose set of random delays
- periodic boundary condition (wrap around at end of shifted time   
series to its beginning) preserves total length of time series 

- state-space trajectory invariant under shifting operation for periodic     
boundary condition

- caveat: distinguish linearity from nonlinearity?

R. Quian Quiroga, A. Kraskov, T. Kreuz, P. Grassberger, Phys. Rev. E 65, 041903, 2002; T.I. Netoff, S.J. Schiff, J. Neurosci. 22, 7297, 2002

testing for interactions surrogates
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bi-(multi-)variate surrogates from constrained randomizations (CR)

CR null hypothesis: 
the data have been generated by linearly coupled processes with 
arbitrary structure, and possibly observed through some (static) 
nonlinear measurement function

method:
- would need to maintain time series and cross correlation … 
what to randomize?

- idea: preserve auto- and cross-correlation up to certain maximum 
delay (iteratively minimize appropriate cost function, simulated    
annealing

- caveat: high computational cost; convergence?

T. Schreiber, Phys. Rev. Lett. 80, 2105, 1998; RG Andrzejak, A Kraskov, H Stögbauer, F Mormann, T Kreuz, Phys. Rev E, 68, 066202, 2003. 

testing for interactions surrogates
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special bi-(multi-)variate surrogates for nonlinear interdependencies

null hypothesis: 
the data have been generated by linearly coupled processes with 
arbitrary structure, and possibly observed through some (static) 
nonlinear measurement function

method:
- for conditional measures (S(X|Y)), randomize time series of system   

X (e.g. IAAFT), and vice versa, before delay-embedding
- use “randomized” time indices for distance calculations

-caveat: may be not useful for estimating strength of interaction

RG Andrzejak, A Kraskov, H Stögbauer, F Mormann, T Kreuz, Phys. Rev E, 68, 066202, 2003. 

testing for interactions surrogates
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special bi-(multi-)variate surrogates for (symbolic) transfer entropy

null hypothesis: 
the data have been generated by uncoupled processes with 
arbitrary structure, and possibly observed through some (static) 
nonlinear measurement function

method:
- randomize time series of (presumed) driving system either in time 
domain (e.g. IAAFT) or in state-space (e.g. random shuffling of 
state-space vectors)

R. Marschinski, H. Kantz, Eur. Phys. J. B 30, 275, 2002; A. Papana, D. Kugiumtzis D, PG Larsson. Phys. Rev. E. 83, 036207, 2011

testing for interactions surrogates
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cyclic phase permutation (CPP) surrogates

null hypothesis: 
the systems have independent phase dynamics

method:
- derive phase time series (e.g. Hilbert transform)
- find individual cycles (periodicities) and randomly permute phase 

cycles

- caveat: null hypothesis sufficient?

testing for interactions surrogates

example:
noisy sine-wave with 
time-varying periodicity

t [a.u.]t [a.u.]

Lancaster G, Iatsenko D, Pidde A, Ticcinelli V, Stefanovska A. Phys. Rep. 748, 1-60, 2018



20

Fundamentals of Analyzing Biomedical Signals Interactions

testing for interactions

rejecting/accepting null hypothesis 

choose significance level
p = (1- ) x 100%

measure for interaction
differs for originals and surrogates

original
time series

Ns = (1/ -1) surrogates (one-sided)
Ns = (2/ -1) surrogates (two-sided)
(e.g., Ns = 19 resp. 39 for p = 95 %

reject null hypothesis:
indication for dependence

measure for interaction does not
differs for originals and surrogates

accept null hypothesis:
no indication for dependence
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testing for interactions

rejecting/accepting null hypothesis 

interpretation:

- statistical test only, it is not a proof for dependence! 

- rejection of null hypothesis only provides necessary but not 
sufficient condition for interaction measure to indicate dependence

- acceptance of null hypothesis does not indicate its correctness

- whenever a null hypothesis is rejected, it is always very important 
to keep in mind that the complementary hypothesis is very 
comprehensive and might include many different reasons that are 
possibly responsible for this rejection

- consider including other (statistical) properties of your time series 
and properties of the coupling into the null hypothesis
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testing for interactions surrogates

state-of-the-art:

Fourier phase randomization alone may be inappropriate, because 
of mixing of phase and amplitude information

specifically designed surrogates require a priori knowledge about 
systems and data

no best method, no unified concept

unsolved issue:
how to discern a linear superposition of independent nonlinear 
deterministic dynamics from coupled nonlinear deterministic 
dynamics?
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testing for interactions

bias correction for measures of direction of interaction

measures for direction of interaction should be zero in case of 
absent directional couplings

non-zero values may be due to various reasons
- statistical issues (e.g. insufficient number of data points)
- sensitivity of measure
- “similar” systems 
- directional coupling

idea: use surrogate to correct for potential bias
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testing for interactions

bias correction for measures of direction of interaction

ansatz:
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testing for interactions

bias correction for measures of direction of interaction

example: 
unidirectionally coupled Hénon maps, 512 data points each
symbolic transfer entropy, different correction schemes, mean from 100 realizations 
different embedding dimensions, noisy-free case, + 20 % noise

Papana A, Kugiumtzis D, Larsson PG. Reducing the bias of causality measures. Phys. Rev. E. 83, 036207, 2011

mx = my = 3 mx = 4; my = 3 noisy systems
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testing for interactions

bias correction for measures of direction of interaction

example: 
unidirectionally coupled Hénon maps, 512 data points each
symbolic transfer entropy, different correction schemes, mean from 100 realizations 
different embedding dimensions, noisy-free case

Papana A, Kugiumtzis D, Larsson PG. Reducing the bias of causality measures. Phys. Rev. E. 83, 036207, 2011
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testing for interactions what can go wrong?

field applications

- all issues related to estimating a given interaction measure

- all issues related to univariate surrogates

- all issues related to formulating adequate null hypotheses

- avoid wishful thinking!
(sometimes it’s just P2C2E*)

*process too complicated to explain: Iff in S. Rushdie: Haroun and the Sea of Stories. Granta Books, London (1990) 

Fundamentals of Analyzing Biomedical Signals Interactions


