system theory:

provides mathematical tools to allow transformation of a physically encoded information into another representation without loss of Information (e.g. from position-space to Fourier space)

transmission system:

examples:

1D encoded information:

input = language; system = telephone; output = acoustic signal (phone) information: time-variant membrane pressure

1

2D encoded information:

input = image; system = xerox machine; output = copy of image information: location-dependent grey level distribution

transmission system = imaging system

input ——	→ system	→ output
f(x,y)	imaging system	g(x,y)
x-ray dose D(x,y)	x-ray system with amplification film	film
attenuation coefficient µ(x,y)	CT-system	digitized image
proton density ρ(x,y)	MRI-system	image on monitor

definitions

system properties

an imaging system with:

$$f(x,y) \longrightarrow System \longrightarrow g(x,y)$$

is called translation-invariant, iff:
 $f(x-x_0, y-y_0) \longrightarrow System \longrightarrow g(x-x_0, y-y_0)$

definitions

mathematical methods for system characterization:

Dirac function Fourier transform and convolution theorem time domain: impulse response / transfer function spatial domain: point spread function / modulation transfer function auto-/cross-correlation function

additional aspects for real systems:

noise sampling; aliasing filtering

definitions

1D Dirac function

with rectangular function
$$\operatorname{rect}(t) = \begin{cases} 1 \operatorname{für} |t| \le 1/2 \\ 0 \operatorname{für} |t| > 1/2 \end{cases}$$

follows the definition of δ -function (Dirac function):

$$\delta(t) \coloneqq \lim_{T \to 0} \frac{1}{T} \cdot \operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} \infty \text{ if } t = 0\\ 0 \text{ if } t \neq 0 \end{cases}$$

 δ -function: infinitely short pulse with infinitely large amplitude

definitions

1D Dirac function

approximation of some function f(t) with sequence of rect-functions

definitions

1D Dirac function

- approximation of some function f(t) with sequence of rect-functions
- the smaller T, the more accurate the approximation
- for $T \rightarrow 0$:

$$n \cdot T \to \tau, T \to d\tau, \lim_{T \to 0} s(t) = \delta(t)$$

$$\lim_{T \to 0} s(t) = f(t) = \int_{-\infty}^{+\infty} f(\tau) \delta(t-\tau) d\tau$$

definitions

1D Dirac function

approximation of some function f(t) with sequence of rect-functions

the integral
$$f(t) = \int_{-\infty}^{+\infty} f(\tau) \delta(t-\tau) d\tau$$
 is called **convolution**
of function *f* with Dirac function und can be written as:
 $f(t) * \delta(t) = f(t)$

definitions

2D Dirac function

analogue definitions for 2D case

$$f(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(p,q)\delta(x-p,y-q)dpdq$$
$$= f(x,y) * \delta(x,y)$$

 $\delta(x,y)$ is a two-dimensional impulse

definitions

Dirac function

properties of the δ -function:

filtering:
$$f(x_0) = \int_{-\infty}^{+\infty} f(x)\delta(x - x_0)dx$$

linearity:
$$c_1 \cdot \delta(x) + c_2 \cdot \delta(x) = (c_1 + c_2) \cdot \delta(x)$$

symmetry:
$$\delta(-x) = \delta(x)$$

elongation:

$$\delta(bx) = \frac{1}{|b|} \cdot \delta(x)$$

definitions

convolution

properties of convolution algebra:

convolution
$$g(x) = f(x) * h(x) = \int_{-\infty}^{+\infty} f(y)h(x-y)dx$$

identity

 $f(x) = f(x) * \delta(x) = \delta(x) * f(x)$

commutative

associative-

distributivelaw/ linearity

differentiatio

$$f(x) = f(x) * O(x) = O(x) * f(x)$$

e- $f(x) * h(x) = h(x) * f(x)$

$$[f(x) * g(x)] * h(x) = f(x) * [g(x) * h(x)]$$

$$f(x) * [c_1h_1(x) + c_2h_2(x)] = c_1f(x) * h_1(x) + c_2f(x) * h_2(x)$$

on $(f(x) * h(x))' = f'(x) * h(x) = f(x) * h'(x)$

- in signal processing h(t) is called $\ensuremath{\text{impulse response}}$
- for $h(t) = \delta(t)$, the system is called **ideally distortion-free** since $f(t) = \delta(t) * f(t)$ holds

- consider input functions whose amplitudes are influenced by the system, but there are no other changes of form
- such functions are called **eigenfunctions**
- example: harmonic functions with constant frequency ω .

$$f(t) = e^{j2\pi\omega t} = \cos(2\pi\omega t) + j\sin(2\pi\omega t)$$

system response to harmonic function at input:

$$f(t) * h(t) = \int h(\tau) \cdot e^{j2\pi\omega(t-\tau)} d\tau$$
$$= e^{j2\pi\omega t} \cdot \int h(\tau) \cdot e^{-j2\pi\omega \tau} d\tau = H \cdot f(t)$$

definitions

Fourier transform

- the, in general, complex-valued factor *H* depends on system, frequency, and input function:

$$H(\varpi) = \int h(t) \cdot e^{-j2\pi \varpi t} dt$$

- $H(\omega)$ is called **transfer function** (filter response, frequency response).

- since

$$h(t) = \int H(\varpi) \cdot e^{j2\pi\omega t} d\omega$$

both impulse response h(t) and transfer function $H(\omega)$ are equivalent descriptors of a linear stationary systems

- let f(t) be a superposition of harmonic functions.

- the transformation (from time to frequency domain)

$$f(t) = \int F(\omega) \cdot e^{j2\pi\omega t} d\omega$$

and the inverse transformation (from frequency to time domain) $F(\omega) = \int f(t) \cdot e^{-j2\pi\omega t} dt$

is called Fourier transform

definitions

Fourier transform

variant forms of spelling:

$$f(t) \longrightarrow F(\omega)$$

$$f(t) \longrightarrow F(\omega)$$

$$F(\omega) = FT(f(t))$$

$$f(t) = FT^{-1}(F(\omega))$$

definitions

properties of the Fourier transform (I):

linearity

time shift

time/frequency scaling

complex conjugate signal

time reversal

symmetry

$$c_1 \cdot f_1(t) + c_2 \cdot f_2(t) \Leftrightarrow c_1 \cdot F_1(\omega) + c_2 \cdot F_2(\omega)$$
$$f(t - t_0) \Leftrightarrow F(\omega) \cdot e^{-j2\pi\omega t_0}$$
$$1 \qquad (\omega)$$

$$f(a \cdot t) \Leftrightarrow \frac{1}{|a|} \cdot F\left(\frac{\omega}{a}\right)$$

$$f^{*}(t) \Leftrightarrow F^{*}(-\omega)$$
$$f(-t) \Leftrightarrow F(-\omega)$$
$$F(t) \Leftrightarrow f(\omega)$$

Fourier transform

definitions

properties of the Fourier transform (II):

 $-\infty$

convolution multiplication cross-correlation auto-correlation

integration

differentiation

energy/variance

(Parseval's theorem)

$$f_{1}(t) * f_{2}(t) \Leftrightarrow F_{1}(\omega) \cdot F_{2}(\omega)$$

$$f_{1}(t) \cdot f_{2}(t) \Leftrightarrow F_{1}(\omega) * F_{2}(\omega)$$

$$f_{1}(t) \otimes f_{2}(t) \Leftrightarrow F_{1}^{*}(\omega) \cdot F_{2}(\omega)$$

$$f(t) \otimes f(t) \Leftrightarrow |F(\omega)|^{2}$$

$$\int_{-\infty}^{+\infty} F(\tau) d\tau \Leftrightarrow (j2\pi\omega)^{-1} \cdot F(\omega) + \frac{1}{2}F(0)\delta(\omega)$$

$$\frac{d^{n}}{dt^{n}} f(t) \Leftrightarrow (j2\pi\omega)^{n} \cdot F(\omega)$$

$$\int_{-\infty}^{+\infty} |f(t)|^{2} dt = \int_{-\infty}^{+\infty} |F(\omega)|^{2} d\omega$$

 $-\infty$

Fourier transform

definitions

Fourier transform

properties of the Fourier transform (III):

with system properties *linearity* and *translation invariance* (stationarity), we have:

 the system response is fully characterized by a single function in time domain: impulse response h(t) in frequency domain: transfer function H(ω)

- equivalent characterization in reciprocal domain (Fourier transform)

 \Rightarrow

multiplication in given domain ∞ convolution in reciprocal domain

definitions

Fourier transform of time-dependent signals

$$F(\omega) = \int_{-\infty}^{+\infty} f(t) \exp(-j \cdot \omega t) dt$$
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) \exp(+j \cdot \omega t) d\omega$$

1D Fourier transform

Fourier transform of location-dependent signals

$$F(u) = \int_{-\infty}^{+\infty} f(x) \exp(-j \cdot 2\pi \cdot ux) dx$$
$$f(x) = \int_{-\infty}^{+\infty} F(u) \cdot \exp(+j \cdot 2\pi \cdot ux) du$$

mapping from spatial domain to frequency domain

FT

FT⁻¹

$$f(x) \quad O \longrightarrow O \quad F(u)$$
$$F(u) = \left| F(u) \right| \cdot \exp(j \cdot \phi(u))$$

definitions

example: sinusoidal signal in spatial domain

domain $u=1/\lambda$:= frequency in Fourier domain λ spatial domain amplitude spectrum [F(u)] f(x)▲

1D Fourier transform

 λ := wave length in spatial

definitions

1D Fourier transform

example: rectangular function in spatial domain

f(x)

$$f(x) = \operatorname{rect}(x) = \begin{cases} A \text{ if } x \in [0, x_0] \\ 0 \text{ else} \end{cases}$$

definitions

1D Fourier transform

example: rectangular function in spatial domain

definitions

1D Fourier transform

example: rectangular function in spatial domain

amplitude spectrum of rect-function in spatial domain

- shifting f(x) in spatial domain does not affect F(u)

- only phase of F(u) is shifted!

definitions

1D Fourier transform

example: image = matrix consisting of digital grey-values

$$\begin{array}{ll} \text{image:} & \left\{ \tilde{f}(x_o), \ \tilde{f}(x_o + \Delta x), \ \dots \ \tilde{f}(x_o + (N-1) \cdot \Delta x) \right\} \\ \\ \text{digitized image:} & \left\{ f(0), \ f(1), \ \dots \ f(N-1) \right\} = f(x); \quad x = 0 \ \dots \ N-1 \end{array} \right. \end{array}$$

digital Fourier transform

$$F(u) = \frac{1}{N} \cdot \sum_{x=0}^{N-1} f(x) \cdot \exp(-j \cdot 2\pi \cdot ux / N)$$
$$f(x) = \sum_{u=0}^{N-1} F(u) \cdot \exp(+j \cdot 2\pi \cdot ux / N)$$

digital Fourier transformed :

"true" Fourier transformed:

$$\begin{split} & \left\{F(0),\ F(1),\ \dots\ F(N-1)\right\} = F(u) \\ & \left\{\tilde{F}(0),\ \tilde{F}(\Delta u),\ \dots\ \tilde{F}((N-1)\cdot\Delta u)\right\} \qquad \Delta u = \frac{1}{N\cdot\Delta x}. \end{split}$$

definitions

1D Fourier transform

1D-FT and convolution theorem

$$h(t) = f(t) * g(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau)d\tau$$

$$\mathsf{FT}(h(t)) = \mathsf{FT}(f(t)) \cdot \mathsf{FT}(g(t))$$

$$FT^{-1}(f(t) \cdot g(t)) = FT^{-1}(f(t)) * FT^{-1}(g(t))$$

convolution in time domain corresponds to multiplication in frequency domain

definitions

1D Fourier transform

examples:

convolution with: g1: narrow, g2: broad point spread function PSF

definitions

2D Fourier transform

$$F(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \exp(-j \cdot 2\pi \cdot (ux + vy)) dx dy$$
$$f(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(u,v) \exp(+j \cdot 2\pi \cdot (ux + vy)) du dv$$

mapping from spatial domain to frequency domain

spatial domain frequency domain

f(x,y) O----O F(u,v)

$$F(u,v) = |F(u,v)| \cdot \exp(j \cdot \phi(u,v))$$

F(u,v) = amplitude spectrum $\phi(u,v) =$ phase

definitions

2D Fourier transform

2D-FT of quadratic images (N=M=power-of-2 \rightarrow FFT):

$$F(u, v) = \frac{1}{N} \sum_{x,y} f(x, y) \cdot \exp(-j \cdot 2\pi(ux + vy) / N)$$
$$f(x, y) = \frac{1}{N} \sum_{u,v} F(u, v) \cdot \exp(+j \cdot 2\pi(ux + vy) / N)$$

if f(x,y) real-valued, then:

$$F(u,v) = F(-u,-v)^*$$
$$F(u+N,v) = F(u,v)$$
$$F(u,v+N) = F(u,v)$$

definitions

2D Fourier transform

2D-FT of quadratic images (N=M=power-of-2 \rightarrow FFT):

with Euler's formula, we have:

 $\exp(-j2\pi ux/N) = \cos(-2\pi ux/N) + j\sin(-2\pi ux/N)$

since \cos and $\sin \pi$ -periodic, we find:

F(u+N) = F(u).

definitions

2D Fourier transform

original

amplitude spectrum

definitions

2D Fourier transform

original

amplitude spectrum

definitions

2D Fourier transform

2D-FT and convolution theorem

$$h(x,y) = f(x,y) * g(x,y) = \int_{-\infty}^{+\infty} f(x',y')g(x-x',y-y')dx'dy'$$

$$2\mathsf{DFT}(h(x,y)) = 2\mathsf{DFT}(f(x,y)) \cdot 2\mathsf{DFT}(g(x,y))$$

 $2\mathsf{DFT}^{-1}(f(x,y)) \cdot g(x,y) = 2\mathsf{DFT}^{-1}(f(x,y)) * 2\mathsf{DFT}^{-1}(g(x,y))$

definitions

correlation functions

auto-(cross-)correlation function assesses the correlation of some signal with a delayed copy of itself (or of another signal) as a *function* of delay (time-lag τ)

$\begin{aligned} auto-correlation function \\ C_{\nu\nu}(\tau) &= \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \nu(t) \nu(t+\tau) dt \\ C_{\nu\nu}(-\tau) &= C_{\nu\nu}(\tau) \\ C_{\nu\nu}(0) &\geq \left| C_{\nu\nu}(\tau) \right| \quad \forall \tau \end{aligned} \qquad \begin{aligned} cross-correlation function \\ C_{\nu\nu}(\tau) &= \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \nu(t) w(t+\tau) dt \\ C_{\nu\nu}(-\tau) &= C_{\nu\nu}(\tau) \\ \tau &= lag \end{aligned}$

normalization such that C_{vv} (C_{vw}) = 1 for τ = 0
definitions

correlation functions

$$1D \text{ case:} \qquad f(x) \otimes g(x) = \int_{-\infty}^{+\infty} f(x') \cdot g(x+x') dx'$$

$$\text{correlation theorem:} \qquad f(x) \otimes g(x) \bigcirc \bigcirc F^*(u) \bigcirc G(u)$$

$$2D \text{ case:} \qquad f(x,y) \otimes g(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x',y') \cdot g(x+x',y+y') dx' dy'$$

$$\text{correlation theorem:} \qquad f(x,y) \otimes g(x,y) \bigcirc \bigcirc F^*(u,v) \bigcirc G(u,v)$$

$$\text{auto-correlation function:} \qquad f(x,y) \otimes f(x,y) \bigcirc \bigcirc F^*(u,v) \bigcirc F(u,v)^2$$

definitions

correlation functions

example: autocorrelation functions of some signals

definitions

correlation functions

example:

at which shifts has function f(x) highest similarity with itself?

the auto-correlation function $f(x) \otimes f(x)$ exhibits several maxima

definitions

correlation functions

example:

at which shifts has function g(x) highest similarity with function f(x)?

the cross-correlation function $f(x) \otimes g(x)$ exhibits two maxima

main theorem of system theory of imaging systems:

for a linear and translation-invariant system, there exists a function h(x,y), such that:

$$g(x,y) = f(x,y) * h(x,y) = \int_{-\infty}^{+\infty} f(x',y')h(x-x',y-y')dx'dy'$$

imaging systems: *h*(*x*,*y*) is called *point spread function* (PSF)

signal processing: *h*(*t*) is called *impulse response function*:

$$g(t) = f(t) * h(t) = \int_{-\infty}^{+\infty} f(t)h(t-\tau)d\tau$$

point spread function

CT-image of wire (phantom measurement)

main theorem of system theory of imaging systems:

with convolution theorem, we have:

$$\begin{split} g(x,y) &= f(x,y) * h(x,y) & O & O & G(u,v) = F(u,v) \cdot H(u,v) \\ & h(x,y) & O & O & H(u,v) \end{split}$$

the function H(u,v) is called *transfer function* and is the Fourier transform of the point spread function h(x,y)

signal processing: $H(\omega)$ is called filter (of frequency) *response*

definitions

modulation transfer function

general definition of MTF:

MTF = modulation transfer function

MTF(u,v) = |H(u,v)|

and more exactly:

$$\mathsf{MTF}(\mathsf{u},\mathsf{v}) = \frac{\mathsf{H}(\mathsf{u},\mathsf{v})}{\mathsf{H}(\mathsf{0},\mathsf{0})}$$

MTF = absolute value of transfer function normalized to 1 at the origin

modulation transfer function for sinusoidal functions

$$MTF(u,v) = \frac{|H(u,v)|}{|H(0,0)|}$$
$$= \frac{amplitude @output}{amplitude @input}$$
$$= \frac{contrast @output}{contrast @input}$$

modulation transfer function MTF

- let r(x,y) denote a noise input image (quantum noise)

- the image does not contain any information:
 Fourier spectrum is white, there are no correlations between pixels
- let R(u,v) denote the 2D-Fourier transform of r(x,y) (noise amplitude spectrum).

$$r(x,y) \circ - o R(u,v)$$

 $|R(u,v)^2| = NPS_{input} = noise power spectrum$

definitions

noise @input

white noise: 2D autocorrelation function ≠ 0 at origin only

autocorrelation fct

definitions

noise

- let r(x,y) pass through ideal imaging system
- system is noiseless (does not add noise to output)
- noise @output can be explained by quantum noise only !!
 - (i.e., Detective Quantum Efficiency DQE=1)
- for quantum noise, we have: DQE = $\frac{\text{mean number of detected }\gamma\text{-quanta}}{\text{mean number of incoming }\gamma\text{-quanta}}$
- with Fourier transform and transfer function

, image @output Fourier transform @output r(x,y) * h(x,y) O $R(u,v) \cdot H(u,v)$

the noise power spectrum @output reads (*Wiener spectrum* W(u,v)):

NPS_{output}
$$(u,v) = W(u,v) = |R(u,v)|^2 \cdot |H(u,v)|^2 = |R(u,v)|^2 \cdot MTF(u,v)^2$$

(DQE = 1!)

definitions

noise

- noise power spectrum @output:

$$NPS_{output}(u,v) = k \cdot MTF(u,v)^2$$

k = proportionality factor
not dependent on noise power spectrum @input

- noise power spectrum @output and squared MTF have same functional form!
- since FT (autocorrelation function) = noise power spectrum
 ⇒ autocorrelation function @output and squared MTF
 have same functional form!

definitions

noise

noise @input

amplitude spectrum

noise @output

amplitude spectrum

autocorrelation fct

- neighboring pixel in an output image of an imaging system are no longer independent from each other
- a finite MTF truncates higher spatial frequencies
- a band-limited Fourier spectrum is equivalent to stronger correlations in an image
- an imaging system with finite MTF generates correlations in the output image

definitions

noise

- Detective Quantum Efficiency (DQE): a measure for image quality

$$DQE = \frac{(signal/noise ratio)^2 @output}{(signal/noise ratio)^2 @input}$$

- factor, by which the system deteriorates the signal/noise ratio
- if only noise@input:

factor, by which the system deteriorates noise

 previous assumption: system does not add noise to output (ideal system; DQE = 1)

definitions

noise

 signal @output can be estimated from signal @input using the transfer function H(u,v) :

$$signal_{output}(u,v) = signal_{input}(u,v) \cdot H(u,v)$$

- with MTF(u,v) = |H(u,v)|, we have

$$signal_{output}^{2}(u,v) = G^{2} \cdot signal_{input}^{2}(u,v) \cdot MTF^{2}(u,v)$$

where G = amplification factor (gain); system-dependent

\Rightarrow generalized DQE

$$DQE(u,v) = G^2 \cdot MTF^2(u,v) \cdot \frac{NPS_{input}(u,v)}{NPS_{output}(u,v)}$$

definitions

noise

DQE and MTF for an imaging system

with: DQE(u,v) =
$$G^2 \cdot MTF^2(u,v) \cdot \frac{NPS_{input}(u,v)}{NPS_{output}(u,v)}$$

we have: NPS_{output}(u,v) =
$$G^2 \cdot \frac{MTF^2(u,v)}{DQE(u,v)} \cdot NPS_{input}(u,v)$$

even if DQE(u,v) = const. for high spatial frequencies (u,v), the noise power spectrum is reduced by the MTF(u,v)

if DQE(u,v) decreases more rapidly to 0 than MTF(u,v), the noise power spectrum in this frequency band is strongly enhanced

noise

DQE and MTF for an imaging system

- MTF is always finite in real imaging systems band limitation, correlations diminished spatial resolution

- there is always noise in real imaging systems DQE < 1

improving DQE results in a deteriorated MTF and vice versa !

definitions

DQE and MTF for an imaging system

no noise

256 quanta/pixel noise +/- 16 16 quanta/pixel noise +/- 4

noise

definitions

sampling

digitization:

conversion of continuous (amplitudes) grey-scale values into digital discrete (amplitudes) grey-level values

quantization:

conversion of an analogue (signal) image into discrete (values) pixel

quantization error:

example: 10 bit ADC
range: 0 - 1024
single value:
$$q = \frac{1024}{2^{10}} = 1$$

quantization error (q/2) = 0,5

definitions

sampling

given image f(x,y) and sensors with sensitivity curve S(x,y)

signal from sensor (n,m):

$$M_{nm} = \iint f(x,y) \cdot S(x - n \cdot \Delta x, y - m \cdot \Delta y) dxdy$$

mathematically: S(x,y) is 2D-Dirac function multiplication (convolution) of image with a **comb-like function**, that attains the value 1 in the center of a pixel and the value 0 otherwise

definitions

sampling

definitions

sampling theorem

signal processing:

sampling interval and Nyquist frequency

$$v_n = \sum_{n=-\infty}^{\infty} v(t) \delta(t - n\Delta t)$$

$$v_n = v(n\Delta t);$$
 $n = ..., -3, -2, -1, 0, 1, 2, 3, ...$

$$\Delta t$$
 is called sampling interval
 $\omega_{Nyquist} \equiv \frac{1}{2\Delta t}$

definitions

sampling theorem

Let v(t) denote a continuous and band-limited function, sampled with sampling interval Δt :

$$V(\omega) = 0 \quad \forall |\omega| > \omega_{Nyquist}$$

where $V(\omega)$ denotes the Fourier spectrum of v(t).

v(t) is then fully determined by the sampling values v_n :

$$v(t) = \Delta t \sum_{n = -\infty}^{+\infty} v_n \frac{\sin(2\pi\omega_{Nyquist} (t - n\Delta t))}{\pi(t - n\Delta t)} \propto v(t) * \operatorname{sinc}\left(\frac{t}{\Delta t}\right)$$

definitions

sampling theorem

image processing:

sampling interval and Nyquist frequency

 Δx is called spatial sampling interval

$$\omega_{Nyquist} \equiv \frac{1}{2\Delta x}$$

 $\omega_{Nyquist}$ is the highest spatial frequency

definitions

aliasing

- aliasing: sampling a non-band-limited continuous function

$$V(\omega) \neq 0 \quad |\omega| > \omega_{Nyquist}$$

- these spectral components are (somehow) convolved to the interval

$$|\omega| \leq \omega_{Nyquist}$$

solution:

- (1) bandwidth of signal known *a priori* or limited prior to sampling using some filter
- (2) adequate sampling

definitions

definitions Moiré effect (change of orientation and frequency)

high-frequent sinusoidal input image inadequately sampled image $\Delta x << \omega_{Nyquist}$

lowpass-filtered image $F_{cutoff} = \omega_{Nyquist}$

aliasing

inadequate sampling of an ellipse

definitions

number of projections

definitions

band limiting

function in (b) not band-limited: strong edges = Dirac functions = *white* Fourier spectrum requires *tapering* prior to digitization (multiplication with suitable "window function" (other than boxcar))

sampling

sampling: multiplication of signal (image) with comb-like function

periodisation: convolution of signal with comb-like function (Nyquist condition: periodic continuation)

sampling theorem: when following the Nyquist condition, the band-limited interpolation (sinc-series) yields the original function, or leads to aliasing errors otherwise

sampling frequency: at least twice as high as the signal's maximum frequency .

definitions

filtering

let $f_{\rm G}$ denote the ${\mbox{cut-off}}$ frequency

high-pass filter:

- all **frequency components smaller than** f_G are set to **0** (delete)
- all frequency components larger than f_G are mulitplied by 1 (allowed to pass through)

low-pass filter:

- all frequency components larger than f_G are set to 0 (delete)
- all frequency components smaller than $\mathbf{f}_{\mathbf{G}}$ are multiplied by 1 (allowed to pass through)

filtering

definitions

filtering

original

low-pass filtered

MTF(u,v) of low-pass filter

definitions

filtering

original

MTF(u,v) of high-pass filter

"smearing"

"edge enhancement"

definitions

filtering

synthetic checkerboard 120x120 grey levels

original

grey level profile along one line

white noise (std. dev. = 5)

"salt and pepper" noise

definitions

mean filter

smoothing through local averaging (low-pass)

assumption:

image has low-frequency content only noise has high-frequency content only

spatial domain:

rectangular kernel

replace original pixel with weighted sum of neighboring pixel

caveat: produces echoes ("ringing") due to convolution with sin(x)/x

filtering

mean filter (3x3 low-pass)

original image + white noise

filtered image

mean filter (3x3 low-pass)

original image + salt and pepper noise

filtered image

definitions

Gauss filter

extension of mean filter replace rectangular with Gauss function

diminishes echoes more advantageous than mean filter (FT of Gauss function is Gauss function)

easy-to-implement; fast: Gauss kernel can be decomposed: 2D-filter can be realized by two 1D-filter

filtering

Gauss filter (kernel width: 5 pixel)

Gauss filter

no filter

kernel width: 10 pixel

kernel width: 20 pixel

definitions

median

median is the value separating the upper half from the lower half of a data sample

for discrete data:

- sort by size (rank order)
- then:

$$\widetilde{x} = \frac{x_{\frac{N}{2}} + x_{\frac{N}{2}+1}}{2} \text{ for } N \text{ even}$$
$$\widetilde{x} = x_{\frac{N+1}{2}} \text{ for } N \text{ odd}$$

- use median (or central value) if data sample not normally distributed
- median is insensitive to outlier

definitions

median filter (rank order filter)

for each Pixel p(i,j) and its $n \ge n$ neighborhood,

- sort pixel values by size
- replace p(i,j) with median

pros: diminishes echoes retains discontinuities

no influence of very noisy pixel

cons: longer calculation times

filtering

median filter

white noise $(\sigma = 2)$

median filter 2 x 2 neighborhood

median filter

salt and pepper noise

median filter with 2x2 neighborhood

median filter

summary (I)

prerequisite: imaging system is linear and translation invariant

(1) the mapping of some physical observable f(x,y) using an imaging system can be described mathematically as a convolution of the function f(x,y) with a function h(x,y) that fully characterizes the imaging system. We have: g(x,y) = f(x,y)*h(x,y), where g(x,y) denotes the output of the imaging system.

(2) the convolution theorem allows an equivalent description of the system in a reciprocal space (convolution in spatial domain corresponds to multiplication in Fourier space). We have: G(u,v) = F(u,v) H(u,v), where G, F, H denote the Fourier transforms of the functions f, g, h.

(3) in the spatial domain, h(x,y) is called **point spread function**, the function H(u,v) in the reciprocal domain is called **transfer function**

summary (II)

(4) important characterizing measures for an imaging system (in terms of ...): ... *spatial resolution*

- **point spread function** in spatial domain (sampling)
- modulation transfer function MTF(u,v) = |H(u,v)| in Fourier domain
- ... *noise*
- **Detective Quantum Efficiency** DQE(u,v) = SNR_{input}/SNR_{output} (SNR = Signal-to-Noise Ratio)

(5) for an ideal system:

- point spread function = Dirac function (distortion-free system)
- MTF = 1 for all spatial frequencies
- DQE = 1 for all spatial frequencies

for a real system:

limited spatial resolution

- point spread function non-Dirac-like (broad)
- MTF decreases with higher spatial frequencies (artificial correlations in image)
- DQE < 1 (quantum noise, Poisson distribution)

summary (III)

(6) improving the signal-noise ratio (DQE) results in a diminished resolution (MTF) and vice versa.

- (7) acquisition: obey the sampling (Nyquist) theorem to avoid aliasing errors: sampling rate must be chosen at least twice the maximum spatial frequency in the object of interest
- (8) tapering, if object not band-limited(minimization of broad-band artificial contributions to image)
- (9) post-processing of image:
 - noise contaminations can be minimized by filtering the image
 - choose filter appropriately! (the best filtering is no filtering)