

Honsfuld

Hounsfield, 1969

additional literature: W.A. Kalender: Computertomographie Publicis MCD Verlag, 2000

1

brief historical overview of CT development

- 1895 W.C. Röntgen discovers a 'new kind of radiation', later termed "Röntgenstrahlung" (x-rays)
- 1917 J.H. Radon develops mathematical fundamentals to compute tomographic images from transmission measurements

1960/1970 improvements of computer technology

- 1972 G.N. Hounsfield und J. Ambrose: first clinical examination with CT
- 1975 first whole-body CT scanner in clinical use
- 1979 Nobel Price awarded to Hounsfield and Cormack
- 1989 first clinical examinations with spiraling CT
- 1998 first clinical examinations with spiraling multi-slice CT
- 2000 approx. 30 000 clinical spiraling CT installations worldwide

1974 image matrix: 80 x 80

2000 image matrix : 512 x 512 spiraling CT

4

Hounsfield, 1969

modern CT scanner

drawbacks of projection radiography:

x-ray image:

- modulated distribution of γ -quanta transmitted through tissue
- 2D projection der attenuation properties of tissue
- all irradiated volume elements contribute to attenuation
- line integral of attenuation: $J_{\rm D} = J_0 e^{-\int \mu(x,y,z) dI}$
- contrast mainly from structures with high μ (bones) or profound differences in thickness; soft tissue hard to resolve
- projection radiography is not tomography

homogeneous object; mono-chromatic radiation

7

non-homogeneous object; mono-chromatic radiation

non-homogeneous object; poly-chromatic radiation

fundamentals of x-ray computed tomography

fundamentals of computed tomography*:

- measure spatial distribution of physical observable of interest (e.g., attenuation coefficient µ(x,y)) of object of interest
- from measured values estimate non-overlapping images (Radon transform and Fourier-slice theorem)

*holds for any kind of tomographic imaging technique (x-ray CT, PET, MRI, ...)

idea: record information from single slices

consider human body as being composed of finite many discrete volume elements

in coarse-grained resolution:

- single transversal slices of thickness s
- slices are composed of discrete cuboid volume elements

voxel (volume element) *pixel* (picture element)

recording tomographic images and inverse problem

inverse problem: given set of N_p recordings (tomographic images) outside of some object, estimate the distribution of some physical property (e.g., $\mu(x, y)$) inside the object

H. von Helmholtz: the inverse problem has no unique solution

J. Radon (1917): the 2D distribution of some object property can be fully characterized with an **infinite amount of line integrals**

 \Rightarrow a finite number N_p of recordings allows a *sufficiently accurate* approximation of the distribution of some physical property

(**forward problem**: given the distribution of some physical property inside the object, determine result of measurement outside the object)

with Radon's demand: translation first translation x-ray tube (yields a projection), then rotation collimator rotation (min. 180°) detector & electronics needle beam collimator intensity profile attenuation profile = "projection" modern CT scanner: computer 800-1500 projections with approx 600-1200 data per projection 2000₁₄

simplest measurement principle

Radon transform (I)

J. Radon (1917): the 2D distribution of some object property can be fully characterized with an **infinite amount of line integrals**

let f(x,y) denote some arbitrary integrable function

characterize f(x,y) with all straight line integrals passing through the area on which f(x,y) is defined:

$$\int_{-\infty}^{+\infty} f(x(l), y(l)) dl$$

Radon transform (II)

naïve ansatz: successive integration through all points and along all directions

 \Rightarrow some line integrals are identical

⇒ choose appropriate ordering scheme such that all line integrals are unique (e.g., Hesse normal form)

$$\int_{\vec{e}\cdot\vec{r}=s} f(x,y)dl = p_{\Theta}(s)$$

 \vec{e} = unit vector in direction Θ Θ = angle between line of integration and normal passing through origin

Radon transform (II)

with $\Theta \in [0^{\circ}, 180^{\circ}]$ and with all *s*: $(s_{\min} < s < s_{\max})$ \Rightarrow all possible line integrals $p_{\Theta}(s)$ through function f(x, y)

assign values of line integrals to $p(\Theta,s)$ -diagram

a line in Radon space with $\Theta = const$ is called projection $p_{\Theta}(s)$

Radon transform (III-1)

estimate Radon transform for Θ =0

Radon transform (III-2)

estimate Radon transform for $\Theta \neq 0$

Fourier-slice theorem (or projection-slice theorem or central slice theorem) the results of the following two calculations are equal:

- take a 2D function f(x,y), project it onto a (1D) line (projection operator P_1), and do a Fourier transform (F_1) of that projection
- take that same function, but do a 2D Fourier transform (F_2) first, and then slice it through its origin (slicing operator S_1), which is parallel to the projection line

$$F_1P_1 = S_1F_2$$

Fourier-slice theorem

- a recording with a needle beam (line integral) for given angle Θ and distance *s* from the origin (i.e., projection values $p_{\Theta}(s)$) corresponds to the Radon transform of an image.
- the Fourier-slice theorem allows one to determine the function f(x,y) (i.e., $\mu(x,y)$) from the Radom transform

relation between Radon- und Fourier-transform:

let $Rf(\vec{e},s) = \int_{\vec{e}\cdot\vec{r}} f(\vec{r}) d\vec{r}$ denote the Radon transform of function f

with
$$G(\alpha) = F(u, v)$$
 for $(u, v) = \alpha \cdot (\cos \Theta, \sin \Theta)$

we have

$$G(\alpha) = F_1 \left\{ R_{\Theta} f(s) \right\}$$

$$F(u, v) = F_2 \left\{ f(x, y) \right\} \qquad \rightarrow \text{ find } \mu(x, y) \text{ with inverse 2D-FT}$$

Fourier-slice theorem (proof for Θ =0)

projections for Θ =0

 P_0

Fourier-slice theorem (proof for Θ =0)

$$p_{0}(s) = p_{0}(x) = \int_{-\infty}^{+\infty} f(x,y) dy \quad \text{for } \Theta = 0^{\circ}$$
1D Fourier transform of $p_{0}(x)$ is defined as:

$$P_{0}(u) = \int_{-\infty}^{+\infty} p_{0}(x) e^{-j2\pi ux} dx$$
this can be rearranged as:

$$(u) = \int_{-\infty}^{+\infty} \left[\int f(x,y) dy \right] e^{-j \cdot 2\pi ux} dx = \int \int f(x,y) e^{-j \cdot 2\pi (ux + 0 \cdot y)} dx dy = F(u,0)$$
where: $f(x,y) = \int_{-\infty}^{-\infty} F(u,v)$

1D-FT($p_{\Theta=0}(s)$) yields results of 2D-FT(f(x,y)) on the u-axis

Fourier-slice theorem (proof for $\Theta \neq 0$)

projections for $\Theta \neq 0$

Fourier-slice theorem (proof for $\Theta \neq 0$)

projection $p_{\Theta}(s)$ can be regarded as a projection onto the x'-axis of a rotated coordinate system.

the same derivation as with Θ =0 holds: 1D-FT(p_{Θ}(s)) yields results of 2D-FT(f(x,y)) on the u'-axis

in general, we have:

FT of some function f(x,y) rotated by an angle Θ is rotated by the same angle Θ with respect to FT of F(u,v).

Fourier-slice theorem

Fourier-slice theorem

given a function f(x,y) and its 2D FT F(u,v)

and let $p_{\Theta}(s)$ denote a projection of f(x,y) and $P_{\Theta}(w)$ its 1D FT

$$p_{\Theta}(s) \circ 1D-FT \circ P_{\Theta}(w)$$

Then, $P_{\Theta}(w)$ equals the values of F(u,v) on a radial beam with angle Θ .

Radon transform and computed tomography

reconstructing $f(x,y) = \mu(x,y)$ from Radon transform

given sufficient number of projections $p_{\Theta}(s)$:

- estimate all 1D FT of $p_{\Theta}(s)$ (= $P_{\Theta}(w)$)
- for given angle Θ , assign these values to matrix F(u,v)
- estimate inverse FT of F(u,v) (= f(x,y))

Radon transform and computed tomography

caveat:

- recorded data stem from radial beams !
- fast Fourier transform (FFT) requires interpolation onto square lattice (polar coordinates \rightarrow Cartesian coordinates)
- interpolation can lead to serious artifacts !

(modern scanner allow sampling on square lattice)

iterative image reconstruction (I)

- unknown distribution $\mu(x,y)$ only available as projection values (Radon transform) at the end of recording

- use appropriate back transform to find $\mu(x,y)$

simplest ansatz: wanted: N x N pixels in matrix: N² values given: M = $N_p x N_d$ = number of projections x number of data/projection

for $M \ge N$: over-determined problem \Rightarrow can be solved !

iterative image reconstruction (II)

- let $f(x,y) = \mu(x,y)$
- for digital processing: succession of lines of an image matrix yields numerical sequence with index f_i
- f₂ f3 needle beam j t₁ f₁₀ . . . 131 area ratio W_{ii} f₁₀₀ f₉₁
- recording with needle beam *j* yields integral over values f_i along the beam's trajectory:

values f_i are multiplied with weight w_{ij} and summed up w_{ij} denotes area ratio of beam *j* to pixel *i* (for a needle beam, most w_{ij} =0)

iterative image reconstruction (III)

recorded data p_i (line integrals) can be written as:

$$p_{1} = w_{11}f_{1} + w_{12}f_{2} + \dots + w_{1N}f_{N}$$

$$p_{2} = w_{21}f_{1} + w_{22}f_{2} + \dots + w_{2N}f_{N}$$

$$\vdots$$

$$p_M = w_{M1}f_1 + w_{M2}f_2 + \dots + w_{MN}f_N$$

 \Rightarrow linear mapping !!

example: matrix size: 512 x 512 \Rightarrow N^2 = 262.144 given: 1.000 projection values/detector with 800 detectors \Rightarrow M = 1.000 x 800 = 800.000 (over-determined problem!)

800.000 equations with 262.144 unknown !!

iterative image reconstruction (IV)

solving the system of linear equations:

(1) direct methods e.g., Gauss eliminatio

e.g., Gauss elimination impracticable for large matrices

(2) iterative methods:

$$\vec{f}^{\left(k\right)} = \vec{f}^{\left(k-1\right)} - \frac{\left(\vec{f}^{T\left(k-1\right)} \cdot \vec{w}_{k}\right) - p_{k}}{\left(\vec{w}_{k} \cdot \vec{w}_{k}\right)} \cdot \vec{w}_{k}$$

 $\vec{f}^{(k)} = \left(f_1^{(k)}, \dots, f_N^{(k)}\right)^T \text{ vector containing solutions after k-th iteration}$ $\vec{w}_j = \left(w_{j1}, \dots, w_{jN}\right)^T \text{ weight factors for needle beam j}$ $p_j = data of beam j$

iterative reconstruction scheme

- processing of data from 1. projection:

distribute data equally to all pixel that contribute to that projection

- processing of data from 2. projection:

use difference between "forward" calculated data and true data as correction value; distribute correction value equally to all pixels that contributed to that projection

- process data from remaining projections in the same manner

iterative image reconstruction (V)

- method always converges
- method no longer in use in x-ray CT
- method repeatedly applied for PET/SPECT imaging
image reconstruction with filtered back projection

recap:

a recording with needle beam under given angle Θ und distance *s* from origin (i.e., projections $p_{\Theta}(s)$) corresponds to the **Radon transform** of the spatial distribution of $\mu(x,y)$.

with *Fourier-slice theorem*, we have:

- the 1D-FT of projection $p_{\Theta}(s)$ is the 2D-FT of $\mu(x,y)$ along a line in direction of Θ

- reconstruct $\mu(x,y)$ by inverse 2D-FT

but: data in polar coordinates; FFT requires Cartesian coordinates

image reconstruction with filtered back projection (I) back projection:

data (projection values $p_{\Theta}(s)$) are line integrals of $\mu(x,y)$.

however:

integral value = sum over all contributions without location information

ansatz:

- distribute integral value equally along the initial line of integration
- superposition of all back projections at (x,y) approximates µ(x,y)

image reconstruction with filtered back projection (II)

back projection:

attenuation profile:

- 0. back projection
- 1. back projection
- 3. back projection
- N. back projection

attenuation profile after N ($\neq \infty$) back projections

image reconstruction with filtered back projection (III) back projection:

b.p. with finite number of projections has **point spread function** (PSF) ~ 1/r

such a PSF can be assigned to each pixel, weighted with the local $\mu(x,y)$

back projection = 1/r * \mu(x,y) (convolution)

back projection leads to **blurred image**: differences in contrast and/or fine structures not recognizable

image reconstruction with filtered back projection (IV) *filtered back projection*:

idea:

modify point spread function such that blurring is minimized (ideally: prevented).

ansatz:

convolve attenuation profile with suitable filter (convolution kernel)

image reconstruction with filtered back projection (IV-a) *filtered back projection:*

image reconstruction with filtered back projection (V)

filtered back projection.

attenuation profile:

- 0. back projection
- 1. back projection
- 3. back projection
- N. back projection

attenuation profile after N ($\neq \infty$) filtered back projections

image reconstruction with filtered back projection (V-a)

smoothing

standard

edge enhancing

image reconstruction with filtered back projection (V-b)

impact of convolution kernel

smoothing "soft" standard

edge enhancing "bone"

image reconstruction with filtered back projection (VI)

can we derive an analytic form for the filter?

wanted: $f(x,y) = \mu(x,y)$ from inverse 2D-FT of F(u,v), i.e.:

$$f(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(u,v) \cdot e^{j \cdot 2\pi \cdot (ux + vy)} du dv$$

with cylindrical coordinates in Fourier space

$$u = w \cos \Theta$$

 $v = w \sin \Theta$
 $dudv = w dw d\Theta$,

we have:

$$f(x,y) = \int_{0}^{2\pi \infty} \int_{0}^{\infty} F(w,\Theta) \cdot e^{j \cdot 2\pi \cdot w \left(x \cos \Theta + y \sin \Theta\right)} w dw d\Theta$$

image reconstruction with filtered back projection (VI-a) integration can be reduced to $[0,\pi]$ (Hesse normal form):

$$f(x,y) = \int_{0-\infty}^{\pi+\infty} F(w,\Theta) \cdot e^{j \cdot 2\pi \cdot w \left(x \cos \Theta + y \sin \Theta\right)} |w| dw d\Theta$$

(use absolute value of w, to avoid negative radii)

$$F(w,\Theta) = P_{\Theta}(w)$$
 (with Fourier-slice theorem)
 $p_{\Theta}(s) \circ \frac{1D-FT}{0} \circ P_{\Theta}(w)$ (1D FT of a projection

$$f(x,y) = \int_{0}^{\pi} \left[\int_{-\infty}^{+\infty} P_{\Theta}(w) \cdot |w| \cdot e^{j \cdot 2\pi \cdot ws} dw \right] d\Theta$$

$$s = x \cos \Theta + y \sin \Theta$$

image reconstruction with filtered back projection (VI-b) substitution: $\tilde{p}_{\Theta}(s) = \int_{-\infty}^{+\infty} P_{\Theta}(w) \cdot |w| \cdot e^{j \cdot 2\pi \cdot ws} dw$

if |w| were not part of the integral, an inverse FT would immediately recover the original projection $p_{\Theta}(s)$, i.e.:

$$p_{\Theta}(s) O O P_{\Theta}(w)$$

due to the multiplication with |w| in Fourier space, we have a filtering of the projection $p_{\Theta}(s)$:

$$\tilde{p}_{\Theta}(s) = p_{\Theta}(s) * h(s) O O P_{\Theta}(w) \cdot |w|$$

 $\tilde{p_{\Theta}}(s)$ is the **filtered projection** (using the convolution theorem). h(s) is the impulse response function of the filter (= convolution kernel)

image reconstruction with filtered back projection (VI-c) is there a function h(s) that represents FT of |w| ?

problem: h(s) only defined as limiting process

with ansatz: $|w| \approx |w| \cdot \exp(-\varepsilon |w|)$

consider limes $\varepsilon \rightarrow 0$:

- I.h.s. turns into $-1/2\pi s^2$ and r.h.s. turns into |w|
- peak at s=0 the more narrow and larger the smaller ϵ

image reconstruction with filtered back projection (VI-d)

what is the meaning of the integral over Θ ?

$$\begin{split} f(\mathbf{x},\mathbf{y}) &= \int_{0}^{\pi} \tilde{p}_{\Theta}(\mathbf{s}) d\Theta \\ &= \int_{0}^{\pi} \tilde{p}_{\Theta}(\mathbf{x} \cos \Theta + \mathbf{y} \sin \Theta) d\Theta \end{split}$$

back projection:

in order to derive $f(x,y)=\mu(x,y)$ at position (x,y), take all filtered projections $\tilde{p}_{\Theta}(s)$ at position $x\cos\Theta+y\sin\Theta$ und sum them up.

image reconstruction with filtered back projection (VII)

image reconstruction with filtered back projection (VIII) linear interpolation:

problem:

a back projection may not always hit the center of quadratically arranged pixel

solution (go backward)
1) from the center of a pixel target at the filtered projection under angle Θ
2) perform *linear interpolation* between adjacent values to approximate measurement position of the detector.

image reconstruction with filtered back projection (IX)

Nyquist theorem and noise:

- digital sampling leads to maximum frequency $w_{max} = 1/2\Delta S$ in the projections, where ΔS denotes the distance between detectors
- since spatial frequencies larger than w_{max} are not known a priori, the filtered back projection has a degraded performance in applications (high spatial frequencies over-emphasized)
- at spatial frequencies w< w_{max} the spectrum $\mathsf{P}_{\Theta}(w)$ is dominated by noise
- multiplication with |w| enhances noise additionally

ansatz: replace |w| with a "more suitable" filter function

image reconstruction with filtered back projection (IX-a) alternative filter functions according to Shepp & Logan and Ramachandran & Lakshminarayan

image reconstruction with filtered back projection (IX-b) alternative filter functions according to Shepp & Logan and Ramachandran & Lakshminarayan

image reconstruction with filtered back projection (X) analog and digital filtering:

image reconstruction with filtered back projection (X) analog and digital filtering:

what does a CT image represent?

Hounsfield scale

absorption- or attenuation coefficient

in nuclear physics:

 $[\mu] = cm^{-1}$ (μ depends on energy of x-rays!)

in medical imaging: *relative Hounsfield unit (HU; CT number)*

$$\mu_{rel} = \frac{\mu - \mu_{water}}{\mu_{water}} \cdot 1000$$

- human body mostly consists of water (~60 %)
- representation in *per mille* since most soft tissues differ only very little from μ_{water}

Hounsfield scale

Hounsfield scale

Hounsfield scale and window techniques

improve differentiability of soft tissues with window technique

C center W width improved interpretability of CT images

e.g. bone window: C/W = 1000/2500mediastinum window: C/W = -50/400lung window: C/W = -625/1250

Hounsfield scale and window techniques

Hounsfield scale and dual-energy CT

- CT number hard to interpret unequivocally (note: average of attenuation coefficients of all chemical elements in a given voxel!)
- ambiguous diagnostic finding (example):
 observation: area with increased attenuation in soft tissue question: recent (bleeding) or existent process (calcium deposit)
- use order-number-dependent energy-dependence of $\mu = f(E,Z)$
- dual energy CT:
 - two recordings with different energies of x-rays
 - subtraction of images yields material-selective image

Hounsfield scale and dual-energy CT

estimating homogeneity

tolerance: <u>+</u> 4HU from set value (water: 0 HU)

20 cm water phantom

	mean	σ
middle	–1,6 HU	21,3 HU
top	–0,9 HU	14,8 HU
right	–1,3 HU	14,7 HU
bottom	–0,9 HU	14,6 HU
left	–1.3 HU	14.9 HU

32 cm water phantom

	mean	σ
middle	3,0 HU	68,5 HU
top	–1,6 HU	34,8 HU
right	–0,9 HU	34,2 HU
bottom	–0,9 HU	35,1 HU
left	–0,1 HU	35,3 HU

comparing projection radiography and computed tomography

both techniques:

- imaging with x-rays
- require comparable dose (novel CT-systems even lower dose)

projection radiography:

- contrast = sum of signals (μ) along transmission trajectory
- contrast depends on atomic number Z and dose

computed tomography

- contrast = μ-values from adjacent voxel (not due to summation or line integrals); local composition of tissue
- no influence from adjacent or overlapping structures

CT image

Röntgen image

CT image: high local contrast K $K = \Delta CT = J_1 - J_2$ ~ 50 % Röntgen image: low soft-tissue contrast $K=(J_1-J_2)/((J_1+J_2)/2)$ ~ 0,23 %

measurement devices for x-ray computed tomography

data acquisition

1. generation CT scanner

Hounsfield 1969 (phantom measurements)

(A method of and apparatus for examination of a body by radiation such as x-ray or gamma radiation, US patent 1970)

technique:pencil beam (single x-ray needle-like beam)principle:translation-rotationdetectors:1x-ray source:americum 95recording duration:9 days(image reconstruction:2.5 hrs; computing center EMI)

data acquisition

scheme of recording with 1. generation CT scanner

data acquisition

2. generation CT scanner (first commercial system) Hounsfield 1972-1975

technique:

principle:

detectors:

partial fan beam beam width: 10° translation-rotation array (>30) high performance tube x-ray source: recording duration: 300 s

matrix size:

80 x 80 = 6400 pixel

estimated from 180 projections (1°-steps) with 160 data each= 28.800 data/scan
data acquisition

scheme of recording with 2. generation CT scanner

data acquisition in Radon space (2. generation CT scanner)

 $s \neq 0, \Theta = 0$

 $s \neq 0, \, \Theta \neq 0$

data acquisition

3. generation CT scanner

1976

- improved utilization of available dose
- enables whole-body scanning

detector array

technique:	full fan beam
	beam width: 40° - 60°
principle:	continuous rotation
	(tube and detector array rotate around patient)
detectors:	array (500-800)
x-ray source:	high-performance tube (1-2 ms pulses every 13 ms)
recording duration:	5 s

data acquisition

data acquisition in Radon space (3. generation CT scanner)

data acquisition

4. generation CT scanner

stationary detector array

1978

- comparable to 3. generation scanner

- no commercialization (logistics, costs)

technique:	full fan beam		
	beam width: 40° - 60°		
principle:	tube rotates continuously around patient		
detectors:	stationary array (~5000)		
x-ray source:	continuously emitting high-performance tube		
recording duration:	~ 1 s		

data acquisition

scheme of recording with 4. generation CT scanner

"inside" detector ring

"outside" detector ring

detector ring needs to be tilted wrt rotation-axis of x-ray tube

data acquisition in Radon space (4. generation CT scanner)

data acquisition with 1. to 4. generation CT scanner

- 1. and 2. generation: head recording only
- image reconstruction of a single slice only (2-5 mm thickness)
- not suitable for large regions or whole-body imaging:
 - record, shift patient (e.g. by 2 mm), record, ...
 - duration, high radiation exposure, artifacts

data acquisition with spiraling CT (W. Kalender, 1989)

idea: slow but continuous translation of patient inside scanner while tube rotates around the center

data acquisition with spiraling CT

problem:

- which data to use for image reconstruction ?
- projections under different angles Θ do not fit each other !

ansatz:

- for each Θ, there are several data sets shifted rel. to each other by *d* (*d* = patient advance)
- estimate "missing" projections at each intermediate step z₁<z<z₁+d by interpolation (not exact but sufficiently accurate)

data acquisition with spiraling CT

continuously rotating tube:

- for *d*=0: projections with
 180°<Θ<360° are redundant
- for *d*≠0: projections with 180°<Θ<360° provide data from intermediate slices
- these can be used for interpolation

 \Rightarrow effectively, interpolation with intermediate slices 0 < z < d/2 only (corresponding to rotation around 180°)

\Rightarrow fast 3D-acquisition of body region

data acquisition with spiraling CT

without interpolation

with interpolation

x-ray computed tomography (CT)						
data acquisition with spiraling CT						
	conventional CT	spiraling CT				
acquisition	<i>n</i> Scans each over 360° at positions $z_1 - z_n$	1 Scan over n ·360° at positions $z_1 - z_n$				
pre-processing	data correction	data correction				
intermediate steps		z-interpolation				
image reconstruction	convolution and back projection	convolution and back projection				
result	<i>n</i> images from fixed positions $z_1 - z_n$	> <i>n</i> images at arbitrary positions $z_1 - z_n$				

data acquisition with spiraling multi-slice CT

data acquisition with spiraling multi-slice CT

data acquisition with spiraling multi-slice CT

data acquisition with spiraling multi-slice CT impact of effective slice thickness

1,25 mm

3,0 mm

1,5 mm

4,0 mm

2,0 mm

5,0 mm

alternative concepts for data acquisition: electron beam CT

- aim: shorten scan time
- idea: scanning without mechanical movements (tube, detector)
- ansatz: generate electron beam, acceleration and focusing onto anode (ring-like target that encompasses the patient)
- advantage: 50 -100 ms scanning time @ slice thickness 1.5 mm
- disadvantage: expensive, bad image quality, limited use (e.g. arteries, bypass), rare

alternative concepts for data acquisition: electron beam CT

alternative concepts for data acquisition: electron beam CT

development of CT performance characteristics

	1972	1980	1990	2000
min. scan time	300 s	5-10 s	1-2 s	0,3-1 s
data/360° scan	57,6 kB	1 MB	2 MB	4x2 MB
data/spiraling scan	-	-	24-48 MB	200-500 MB
image matrix	80x80	256x256	512x512	512x512
power	2 kW	10 kW	40 kW	60 kW
slice thickness	13 mm	2-10 mm	1-10 mm	0,5 - 5 mm
spatial resolution	3 Lp/cm	8-12 Lp/cm	10-15 Lp/cm	12-25 Lp/cm
contrast resolution	5 mm(50 mGy)	3 mm (30 mGy)	3 mm (30 mGy)	3 mm (30 mGy)

apparent stagnation of contrast resolution due to early use of efficient detector systems

1972 rotation in 4 min slice thickness: 8-13 mm ~10 cm in >30 min

2001 rotation in 0.5 s slice thickness: 1 mm 1 m in 1 min

system components

system components gantry

system components

total weight: 400 - 1000 kg weight x-ray tube: ~ 100 kg

rotations: 1-2 per s

estimation of centrifugal force: distance tube – center of rotation: rotation time:

~ 600 mm 0.5 s / turn

 \Rightarrow acceleration: 9.6 g = 9.6 N/kg

 \Rightarrow centrifugal force acting on mounting: ~ 10.000 N

gantry

system components

x-ray tube

characteristics:

- typical power values: 20 60 kW @tube voltage 80 140 kV
- size of focus: 0.5 2.0 mm application dependent:
 e.g.: small focus: thin slices, high resolution
- heat storage capacity of anode
- scan duration

system components

x-ray tube

100

system components

- filtering x-ray energy spectrum
- definition of slice
- shielding of detector against scattering
- radiation protection

filter, apertures, collimation

system components xenon high-pressure ionization chamber

detectors

system components solid-state scintillation detector

scintillation crystal x-rays photo diode light connectors scintillation detector

system components

detection sensitivity of detectors

		20 cm H2O	40 cm H2O
	20 cm H2O	+ 2 cm bone	+ 4 cm bone
detector			
		120 kV	
Xenon	42.8%	39.2%	32.9%
(10 bar, 3cm)			
Xenon	73,8%	74.0%	72.7%
(25 bar, 6cm)			
Gadolinium-	89.9%	88.1%	84.5%
oxysulfide			
(1.4 mm)			
		140 kV	
Xenon	38.4%	34.3%	27,1%
(10 bar, 3cm)			
Xenon	71.0%	70.3%	67.0%
(25 bar, 6cm)			
Gadolinium-	85.3%	83.0%	78.2%
oxysulfide			
(1.4 mm)			

system components

decay behavior of detectors

105

short x-ray pulse at T=0

system components

decay behavior of detectors

 $\tau = 0.0 \text{ ms}$

 $\tau = 1.0 \, ms$

τ = 2.5 ms

a too long decay time τ (afterglow) can deteriorate spatial resolution and image quality!

system components

detectors and sampling theorem

D = size of detector; Δ s=center-to-center distance between detectors

system components

detectors and sampling theorem

solution: "bouncing" focus (cf. 3. generation CT scanner) \rightarrow sampling with half the width of detector

resolution of CT (I)

criterion: modulation transfer function (MTF)

derivation of MTF for CT (restriction to center of scanner):

uncertainties: (1) deviation of x-ray beam from ideal needle-like beam (2) reconstruction algorithm

resolution of CT (II)

trajectories of x-rays in scanner and definition of some geometric quantities

resolution of CT (III)

- assumption 1: point-like detector; extended focus of x-ray tube \Rightarrow point spread function = rectangular function with width b_F \Rightarrow associated MTF in Fourier domain = |sin(u)/u|

- assumption 2: point-like focus of x-ray tube, extended detector \Rightarrow point spread function = rectangular function with width b_D \Rightarrow associated MTF in Fourier domain = |sin(u)/u|

(with cylindrical coordinates $u=w\cos\Theta$ und $v=w\sin\Theta$ in Fourier domain)

$$\Rightarrow MTF_{beam}(w) = \left| \frac{\sin(\pi \cdot b_F \cdot w)}{\pi \cdot b_F \cdot w} \right| \cdot \left| \frac{\sin(\pi \cdot b_D \cdot w)}{\pi \cdot b_D \cdot w} \right|$$

resolution of CT (III)

either extended focus in tube (width b_F) or extended detector (width b_D)

resolution of CT (III)

 MTF_{beam} is the better the smaller $b_F \underline{and} b_D$

if patient is lying in the center of scanner, we have with theorem of intersecting lines:

 $b_F = 1/2 \cdot F$ and $b_D = 1/2 \cdot D$

example:

size of focus and detector: 1 mm \Rightarrow resolution: 0.5 mm (typical value !)

resolution of CT (IV)

assumption: image reconstruction with filtered back projection \Rightarrow influencing factors:

(1) H(w) = filter function = FT of convolution kernel (application-dependent)

(2) G(w) = FT of interpolation function

$$G(w) = \left(\frac{\sin(\pi \cdot \Delta s \cdot w)}{\pi \cdot \Delta s \cdot w}\right)^2$$

 Δs = center-to-center distance between detectors

coarse-grained sampling \rightarrow additional interpolation \rightarrow bad resolution

resolution of CT (V)

$$MTF_{CT}(w) = \left|\frac{\sin(\pi \cdot b_F \cdot w)}{\pi \cdot b_F \cdot w}\right| \cdot \left|\frac{\sin(\pi \cdot b_D \cdot w)}{\pi \cdot b_D \cdot w}\right| \cdot \left|\frac{\sin(\pi \cdot \Delta s \cdot w)}{\pi \cdot \Delta s \cdot w}\right|^2 \cdot \frac{|H(w)|}{|w|}$$

consider frequency w, where MTF is reduced to 50 % :

CT	up to	1.2 lp/mm (~ 0.5 mm)
x-ray image amplifier	up to	5 lp/mm (~ 0.1 mm)
x-ray film	up to	10 lp/mm (~ 0.05 mm)

CT has inferior resolution than other x-ray-based techniques BUT: CT provides tomographic images!

noise and CT

noise sources in CT

noise and CT

noisy data

consider number *N* of quanta in detector: $N_{\Theta}(s) = N_0 \cdot e^{-\int \mu(x,y) dl}$

where N_0 = detected quanta/detector without patient and $N_{\theta}(s)$ = detected quanta/detector with patient (projection angle Θ ; site of detector s)

for the projections, we have:

$$p_{\Theta}(s) = \ln \frac{N_0}{N_{\Theta}(s)} = \ln N_0 - \ln N_{\Theta}(s)$$

number of detected quanta is Poisson distributed:

$$N_{\Theta}(s) = \overline{N}_{\Theta}(s) \pm \sqrt{\overline{N}_{\Theta}(s)}$$

noise and CT

$$\Rightarrow \ln N_{\Theta}(s) = \ln \left\{ \overline{N}_{\Theta}(s) \pm \sqrt{\overline{N}_{\Theta}(s)} \right\} = \ln \left\{ \overline{N}_{\Theta}(s) \left\{ 1 \pm \frac{\sqrt{\overline{N}_{\Theta}(s)}}{\overline{N}_{\Theta}(s)} \right\} \right\}$$
$$= \ln \left\{ \overline{N}_{\Theta}(s) \left\{ 1 \pm \frac{\sqrt{\overline{N}_{\Theta}(s)}}{\overline{N}_{\Theta}(s)} \right\} \right\} \approx \ln \overline{N}_{\Theta}(s) \pm \frac{1}{\sqrt{\overline{N}_{\Theta}(s)}}$$

with
$$\frac{1}{\sqrt{\overline{N}_{\Theta}(s)}} << 1$$

noise and CT

\Rightarrow noisy projections

assumption: number of quanta N_0 (without patient) can be estimated with arbitrary precision

$$p_{\Theta}(s) = \ln N_0 - \ln N_{\Theta}(s)$$

= $\ln N_0 - \ln \overline{N}_{\Theta}(s) \pm \frac{1}{\sqrt{\overline{N}_{\Theta}(s)}}$
= $\overline{p}_{\Theta}(s) \pm \frac{1}{\sqrt{\overline{N}_{\Theta}(s)}}$

$$\Rightarrow \sigma_P^2 = \frac{1}{\overline{N}_{\Theta}(s)}$$

variance of projections

noise and CT influence of *noisy projections on pixel noise*

assume cylinder with homogeneous μ in center of scanner

projections are equal for all angles Θ .

now consider pixel noise at x=y=0 ($p_{\Theta}(s)$ are flat)

noise and CT pixel noise

with

$$\widetilde{p}_{\Theta}(n \cdot \Delta s) = \Delta s \cdot \sum_{k=-K}^{+K} p_{\Theta}(n \cdot \Delta s - k \cdot \Delta s) \cdot h(k \cdot \Delta s)$$

and

$$f(x, y) = \frac{\pi}{M} \sum_{i=1}^{M} \widetilde{p}_{\Theta}(x \cos \Theta_i + y \sin \Theta_i)$$

we have :

$$f(0,0) = \frac{\pi}{M} \cdot \Delta s \cdot \sum_{k=-K}^{+K} p_{\Theta}(0) \cdot h(k \cdot \Delta s)$$

cf. image reconstruction with filtered back projection *analog and digital filtering*

Δs = center-to-center distance between detectors

- M = number of projections
- h = filter function

with flat projections: all data to the left and right of s = 0 equal $p_{\Theta}(0)$ in the range -K ... +K

noise and CT pixel noise

projections p_{Θ} are statistically independent and distributed around the mean $\overline{p}_{\Theta}(0)$

$$p_{\Theta}(0) = \overline{p}_{\Theta}(0) \pm \frac{1}{\sqrt{\overline{N}}}$$
 where $\overline{N} = \overline{N}_{\Theta}(0)$

with error propagation :

if $E(A) = A \pm a$ und $E(B) = B \pm b$ ($E(\bullet)$ = expected value) $\Rightarrow E(A+B) = A + B \pm \sqrt{a^2 + b^2}$

$$\Rightarrow f(0,0) = \overline{f(0,0)} \pm \frac{\pi}{M} \cdot \Delta s \cdot \sqrt{\sum_{\Theta_i} \sum_{k=-K}^{+K} \frac{h^2(k \cdot \Delta s)}{\overline{N}}}$$

noise and CT pixel noise

 \overline{N} is constant; sum over all Θ_i

$$\Rightarrow \sigma_{Pixel}^{2} = \left(\frac{\pi}{M} \cdot \Delta s\right)^{2} \cdot M \cdot \frac{1}{\overline{N}} \sum_{k=-K}^{+K} h^{2}(k \cdot \Delta s)$$

with Parseval's theorem, we have:

$$\Rightarrow \sigma_{pixel}^{2} = \frac{\pi^{2} \cdot \Delta s}{M} \cdot \frac{1}{\overline{N}} \int_{-\omega_{max}}^{+\omega_{max}} |H(\omega)|^{2} d\omega$$

 $\Delta s = \text{center} - \text{to} - \text{center} \text{ distance detectors}$

M = number of projections

 \overline{N} = mean count rate

 $H(\omega)$ = filter function for filtered back projection

noise and CT

pixel noise is the smallest, if

- center-to-center distance between detectors Δs is small
- number of projections M is high
- number of quanta per recording site is high

and

- area under squared filter function $H(\omega)$ is small

BUT:

MTF is deteriorated by the same token !

artifacts

- patient movements
- failure of recording electronics
- metal implants
- violation of limits of field of view
- partial volume artifacts
- beam hardening
- scattering

artifacts

patient movements

artifacts

patient movements

interference structure induced by movement

artifacts

patient movements

inhale

artifacts

failure of recording electronics

artifacts

metal implants

tooth: gold filling

artifacts

violation of limits of field of view

artifacts

partial volume artifacts

artifacts

partial volume artifacts

consider two areas with strongly differing µ captured in a single pixel

artifacts

partial volume artifacts

areas with strongly differing μ captured in a single pixel

case A:

artifacts

partial volume artifacts

areas with strongly differing μ captured in a single pixel

case B:

artifacts

partial volume artifacts

consider x-ray intensity at detector site

case A: $J = J_1 e^{-\mu_1 \Delta x} + J_2 e^{-\mu_2 \Delta x}$ case B: $J = J_0 e^{-\mu_1 \frac{\Delta x}{2} - \mu_2 \frac{\Delta x}{2}}$

in general, we do NOT have: $\overline{\mu} = \ln \frac{J_0}{J}$

even worse: mean µ-values from different projections do NOT match

result: banding

prevention: thin slices, higher sampling

artifacts

partial volume artifacts

artifacts

recap:

- µ depends on x-ray energy
- x-ray tube provides broadband energy spectrum

absorption:

- "soft" low-energetic radiation is strongly absorbed
- "hard" high-energetic radiation remains

 \Rightarrow beam hardening

beam hardening

artifacts

beam hardening

effective radiation power of x-ray tube (polychromatic radiation):

power in energy interval dE

total radiation power passed through the body:

$$J = \int_{E_{\min}}^{E_{\max}} \frac{dJ_0(E)}{dE} \cdot e^{-\int \mu(x, y, E)d\ell} dE$$

in general, we do NOT have:
$$\overline{\mu} = \ln \frac{J_0}{J}$$

effect: banding (as with partial volume artifacts)

avoidance: - higher-energetic radiation (flat µ(E)-dependence)
- filtering of low-energetic part of energy spectrum (e.g. copper)

artifacts

beam hardening

artifacts

- Compton scattering leads to an uniform increase of radiation power
- inconsistent data (for reconstruction)
- remedy:
- 3. generation scanner: raster
- 4. generation scanner: subtraction using additional detectors

artifacts

scattering

scattering can lead to false data for back projection, depending on relative orientation of detector to absorber

areas of application

<u>Trauma</u> Kopf-Hals Spinalkanal HNO	Unfalldiagnostik im gesamten Körper Akutes nicht-traumatisches neurologisches Defizit (Blutung, Infarkt) Spinales Trauma Mittelohr, Innenohr, Schädelbasis, Trauma der Schödelbusis, Franio- faziales Skelett und Nasennebenhöhlen, Hypophery x, Jarynz, Tumor
Augenheikunde	Intra-Okulärer Fremdkörper, Ductus naselat im s
Thoraxorgane	Thoraxwand: Tumor, Pleura: Extrandument, Tumor, Lunge: Lungenstruktur, Pulmon le disionen, Nekrose, Verkalkungen, Tumorausdehnung und nituration, Interstitielle Pneumonie, Bronchiektasen, Män Mamforderung, Lungenmetastasen, Zentrales Trachenbronchales System, Gefäßmalformation, Sequestration, Medicasaum: Taumorderung (angeboren/entzündlich/Neoplastisch) To auteron, Ausdehnung, Ätiologie, Tumor-Staging
Herz-Kreislauf- Syster	Aorta Thoracalis: Dissektion, Aneurysma
Beweg tas- apparat	Knochen: Biopsie, Hüftgelenk: Dissektat, Frakturen, Orthopädische Operationsplannung
Gastroenterologie	Pankreas: Endokrin, akute Pankreatitis, Verdauungstrakt: Tumor-Staging
special applications:

- bone density measurement (quantitative CT) osteoporosis treatment and monitoring
- lung density measurement (xenon inhalation)
- 3D planning (tumor irradiation / surgery)

 virtual endoscopy ("fly through") colonoscopy (fistula, intestinal polyp, tumor) bronchoscopy (fistula, ruptures) angioscopy (aneurysm, plaque diagnostics)

- tissue perfusion measurement (contrast agents)
- real time CT
- cardio CT (EKG triggered)

areas of application

Übersicht koronal sagittal 2 transversal transversal sagittal 6lume Render koronal

visualization

areas of application

3D visualization

areas of application

3D visualization

b)

areas of application

3D visualization

areas of application

3D visualization

multi-slice CT:

- -16 detectors
- rotation time: 0.5 s
- resolution: 16 x 0.75 mm
- advance: 25 mm/s
- 70 cm in 28 s
- raw data: 1.4 GB 1400 images

areas of application

3D visualization

areas of application

angiography

conventional angiography

CT angiography

special applications

visualization of volumes

special applications

virtual endoscopy

special applications

dynamic CT

recording of brain tissue perfusion

with xenon inhalation (minute range) (a+b)

with contrast agent (second range) (c+d)

special applications

CT-controlled biopsy

special applications bone density measurement (lumbar spine)

QCT BMD EVALUATION PLOT А 52 years Female Scan Date: 11-jan-1999 Average over [L1, L2, L3] Corresp. images [6, 8, 10] 300 mg Ca-HA / ml BMD = 90.2 mg/ml0.9 SD below MEAN 240 180 120 +1SD MEAN 60 -1SD 0 TP -368.0 Ka 2000 20 60 80 100 0 40 IMA 2 2000 500 Females = 115.0 mg/ml DATABASE: Normal Age (Years) OTOM 2 b)

quantitative CT

comparison projection radiography / CT

		Röntgen		СТ
imaging of	bones	+++		+++
	soft tissue	_/+		-
	vessels	++		++
	functions	_		-
	volumes	_		++
real time		fluoroscopy only	+	
image quality		excellent		good
psychic burden		low		medium
somatic burden		high		high
examination time [min]		10		25
costs/examination [€]		ca. 40		ca.100