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Long-term Behavior and Stability

long-term:

t —< (can not be achieved when observing real systems)

observation time:

T <<

largest characteristic time scale of system
t.<T
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Long-term Behavior and Stability
different types of long-term behavior:

- unlimited growth
In practice: can usually not be observed
In model studies: temporal stabilization or change of model

- bounded dynamics
fixed point, equilibrium
periodic, quasi-periodic motion
chaotic motion

Q: how stable is the dynamics,
when perturbing the system?
(when changing control parameters? mostly not considered)
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Long-term Behavior and Stability
stability dogma (Andronov & Pontryagin, 1930s):

“since all mathematical models are simplifications and abstractions,
models that are relevant for applications must be structurally stable”

l, however

simple models that are composed of physically acceptable unit are

structurally unstable _
l' (cf. weak/strong causality)

which (initial) states lead to the same / a similar long-term behavior?

—> concept of Lyapunov-stability
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Long-term Behavior and Stability

Consider an, in general, nonlinear dynamical system

dj — f(w(t)’ 6), €T E Rd A.M. Lyapunov

Suppose f has an equilibrium at x. so that f(x.) = 0, then this equilibrium

- is Lyapunov stable, if for any € > 0 there exists 6 = d(¢) > 0, such that if
|x(t =0) — x.|| < 6 then ||x(t) — x.|| < € for every t > 0,

- is asymptotically stable, if it is Lyapunov stable and there exists 6 > 0
such that if [|x(t = 0) — x.|| < 9, then lim;_, o ||2(f) — x| = 0,

- is exponentially stable, if it is asymptotically stable and there exist a >
0,v > 0,0 > 0 such that if ||x(t =0) — x.|| < 4§, then ||x(t) — x| <
a|lx(0) — x| e 7", for all t > 0,

where ||-|| denotes, e.g., the Euclidean or the Manhattan norm.

A. M. Lyapunov, The general problem of motion stability, Ann. Math. Stud. 17 (1892).
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Long-term Behavior and Stability

The aforementioned notions of equilibrium stability can be generalized to orbital
stability (closed trajectory; i.e., periodic, quasi-periodic, or non-periodic orbit):

A trajectory ®(t) is called Lyapunov-stable if for any € > 0 there exists § =
d(€) > 0, such that the trajectory of any solution x(t) starting at the o-
neighborhood of ®(¢) remains in the e-neighborhood of ®(t) for all t > 0.

Linear stability analysis:
e consider small perturbation (of equilibrium/trajectory)
e expand f in Taylor-series
e check eigenvalues of Jacobian; stable, if all have strictly negative parts

e recal part of the largest eigenvalue (Lyapunov exponent) determines
time to return to equilibrium /trajectory after perturbation
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Long-term Behavior and Stability

chaotic motion is (locally) Lyapunov-unstable:

divergence:
distance between initially close trajectory segments grows
exponentially in time (stretching mechanism)

convergence:
divergence of initially close segments limited by system size;
when reached, distance shrinks again (folding mechanism)
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Long-term Behavior and Stability

Example: two identical Lorenz oscillators with initial conditions;
one oscillator is slightly perturbed (10-14) at t = 30
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Long-term Behavior and Stability
Example: logistic map: Tn+1 = 7Tn(1 —2y); 2, € [0,1]; r € [0,4]

unstable unstable
1.0 4

A, = largest Lyapunov exponent
(dominates the dynamics)
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Long-term Behavior and Stability
spectrum of Lyapunov exponents: \; with:=1,...,d
characterize growth rates in different local directions of phase space

Lyapunov exponents and divergence: Zle Ni=V-f

dissipative system:3.¢_, \; < 0

A1 = 0 — regular dynamics
A1 > 0 — chaotic dynamics
A1 < 0 — fixed-point dynamics
A1 — 00 — stochastic dynamics

largest Lyapunov exponent:

10
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Lyapunov exponents from time series

model: field data:

continuous trajectories — discrete trajectories
actual phase space — reconstruction
evolution of arbitrary states — available trajectories
equations of motion — available trajectories

and of course: finite data, noise, ...

concepts and algorithms (most widely used):

- spectrum of Lyapunov exponents (in general, hard to estimate)
(Sano & Sawada, 1985; Eckmann et al., 1986; Stoop & Meier, 1988; Stoop & Parisi, 1991)

- Iargest Lyapunov exponent
(Wolf et al. 1985; Rosenstein et al., 1993; Kantz, 1994)

11
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Largest Lyapunov exponent ldea
Consider evolution of two nearby trajectory segments s, and s,

S,(t+7.)

Sl.(t)\/:‘-

G st

For infinitesimally close trajectory segments(||s1(t) — s2(t)|| — 0)
and for infinite time evolution (7, — )
the distance between segments grows or shrinks exponentially:

HSl(t_I_Te) - 32(t+ Te)H - HSl(t) — 32(15)He)\17e

12
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Largest Lyapunov exponent ldea

Isa(t +7) = sa(t + 7| = Ilsa(t) = s2(b)] 17

Solve for A, and implement the limits.

Let s, and s, denote two near trajectory segments of the dynamics.
The first Lyapunov exponent is defined as:

1, (r|sl<t+fre>—sz<t+fre>||)

A1 = lim lim
Te =0 |[s1(t)—s2(t)[[—=0

[[s1(t)—=s2(2)]|

Also: largest Lyapunov exponent or just Lyapunov exponent.

13
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Largest Lyapunov exponent Wolf-Algorithm
estimates the dominant Lyapunov exponent from a time series

by monitoring orbital divergence 2y

¥ -
— .
,_ ~_x(t
Lo & | / W3
e 14 end of

| data set
x(t ) |
1. reconstruct phase space 0 2 \
e T \
2. pick z(tp) on fiduciary trajectory e /
3. find nearest neighbor z (o) hd-ucuuy
trajectory
4. compute ||zo(to) — x(t0)|| =: Lo
5. follow difference trajectory (dashed line forwards in time and compute
[|z0(ti) — x(t;)|| = Lo(i). Increment ¢ until Lg(¢) > €, call that value Ly,
and that time #;
6. find z,(¢1), the nearest neighbor of x(1y), and loop to step 4. Repeat
procedure to the end of fiduciary trajectory (¢t = t,). Keep track of the
L; and L]
Find largest (positive) Lyapunov exponent from:
M-1
1 L,
AR — lo s
1Y NAt Z B2 (L)
where M denotes number of loops, and N number of time steps on fiduciary
trajectory; NAt =t, — ty
14

Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D 16(3), 285-317.
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Largest Lyapunov exponent Wolf-Algorithm

Limitations

- too many parameters that have to be chosen a priori
- problems may be obfuscated:
no exponential growth due to noise
embedding dimension m too small
- highly sensitive to noise
- difficult to find neighboring trajectory segment with required
properties

— need a different way to ensure alignment
to direction of largest growth

15
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Largest Lyapunov exponent Rosenstein-Kantz Algorithm
X(to) X (t ) 9 1. choose reference state x(t,)
; {fx b 2 ) and all states x(t,), ..., x(t,)
x(tl) S y x In e-neighborhood

from: G. Ansmann

2. for givenr,, define average distance of respective trajectory
segments from the initial one as
s(t:7e) = 5 2oy ll2(to + 7e) — x(t; +7)|
3. average over all states as reference states:
S(r.) = £ 3 Ins(t,7.)
4. obtain largest Lyapunov exponent from region of exponential
growth of S(7.) 16
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Largest Lyapunov exponent Rosenstein-Kantz Algorithm
82 H. Kantz / Physics Letters A 183 (1994) 77-87
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Fig. 2, §(7) for a Hénon trajectory of length 2000. The different curves correspond 10 ¢« = 0.0005, 0.002 and 0.008 (the

three bunches from bottom to top} and embedding dimension m = 2-5. The dashed lines have slopes Acxact = 0.4169. Again

T < 0 corresponds to the components used to define the local neighbourhoods.
17
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Largest Lyapunov exponent Rosenstein-Kantz Algorithm

Mind how you average
1. average over the neighborhood of a reference state — s(t ,7)

2. average s(t ,t.) over all reference states — S(7,)
3. Obtain A, from slope of S(7,)

Density of states in a region of the attractor affects:
- reference states
- states in neighborhood of given reference state

Separating averaging in steps 1 and 2

(instead of averaging of all e-close pairs)
ensures that density is accounted for only once
(and not twice)

18
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Largest Lyapunov exponent Rosenstein-Kantz Algorithm
Advantages and Problems

- region of exponential growth can be determined a posteriori
(be careful of wishful thinking though)

- absence of exponential growth usually detectable
(but only usually)

- region of strong noise influence can be detected and excluded

- can only determine the largest Lyapunov exponent

19
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Largest Lyapunov exponent

* tangent-space methods
— require estimate of Jacobian

* spectrum of Lyapunov exponents
— requires a lot of data

extensions

20
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Largest Lyapunov exponent units

for flows: inverse seconds
for maps: inverse iterations

other choices: bits/second or bits/iteration

21



Fundamentals of Analyzing Biomedical Signals Lyapunov Exponents

Spectrum of Lyapunov exponents and type of dynamics

For bounded, continuous-time dynamical systems, we have:

signs of Lyapunov exponents dynamics

- = - ... fixed point

+, ++, +++ . +0, ++0, ... not possible (unbounded)
0, 00, 000, ... no dynamics ( f = 0)
0-,0—, 0—, ... periodic / limit cycle

00-, 00—-, 00——-, ... guasiperiodic (torus)
000-, 0000—, ..., 000—-, ... guasiperiodic (hypertorus)
+0-, +0——, +0———, ... chaos

++0-, +++0—, ..., ++0—, ... hyperchaos

o .. noise

22
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Largest Lyapunov exponent what can go wrong?

field applications

- number of data points (lim N — o)

- data precision
adopt to requirement of small e-neighborhood

- strong correlations in data (sampling interval)
use Theller correction (see Dimensions)

- noise
similar impact as with Dimensions
- filtering
classical filter affect negative Lyapunov exponents only

due to adding a (passive) system —> extra Lyapunov exponent
magnitude ~ cutoff frequency

23
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Largest Lyapunov exponent what can go wrong?

False indications of chaos:
- unbounded orbits can have A, >0
- orbits can separate but not exponentially
(check boundedness and be sure orbit has
adequately sampled attractor; check for contraction
to zero within machine precision)

- can have transient chaos*

(double-check with other methods)

*e.g., Y.-C. Lai and T. Tél, Transient Chaos, Complex Dynamics on Finite-Time Scales (Springer, New York, 2011)

24
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Lyapunov Exponents

Largest Lyapunov exponent
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FIG. 1. First to third ow: Exemplary temporal evolutions of X, of the number e of units with x; > 0.4 ("excited units™), and of an
estimate A of the largest local Lyapunov exponent (empomal evolution smoothed with a Gaussian kernel with a width of 30 to improve
readability). The line colors indicate the pattemns as automatically classified (blue: A, low-amplitude oscillations: green: B, waves: red:
C, extreme events). These patterns are also indicated at the very top with pattem C being indicated with a vertical line. Bottom:
Snapshots of the spatial distribution of x;(¢) at times corresponding to selected local mmnima and maxima of X (from left to nght):
adpeent mimmum and maximum around ¢ = S0, the maximum dunng the event around ¢ = 10000, the minimum before the event
around ¢ = 30 00, and the maximum during that event. Units are represented by pixels, which are armnged according to the lattice
underlying the small-world network and whaose color encodes the value of the respective x, [65].
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Xpla = x;)lx;

By Xx;

¥

transient chaos: an example
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Largest Lyapunov exponent Interpretation

« stability and type of the dynamics:
A, > 0 chaos, unstable dynamics
A, = 0 regular dynamics
A, < 0 fixed-point dynamics

- quantification of loss of information due to action of nonlinearity

- prediction horizon:

—In(p)
T, ~
p Z@,\Z >0 A

where:
p denotes accuracy of measurement (initial state)
> A, >0 18 sum of positive Lyapunov exponents

26
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Kaplan-Yorke conjecture

relationship between dimension and Lyapunov exponents

Dy =k + 1 A where Z )\ >0 and Zk_l_l A <0

|Ak+1|’

Kaplan-Yorke dimension D, equals information dimension D,
(Note: conjecture not generally valid!)

example:

- Heénon map with parametersa=1.4and b =0.3
-2, =0.603, A, =-2.34

- we find with k = 1:

27
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Lyapunov Exponents

Kaplan-Yorke conjecture

relationship between dimension and Lyapunov exponents
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