Physics in Medicine: Fundamentals of Analyzing Biomedical Signals

Klaus Lehnertz

Topics:

- theory of nonlinear dynamical systems
- characterizing measures
- biosignals and recording of biosignals
- applications (medicine, physics, biology)

http://epileptologie-bonn.de/cms/front_content.php?idcat=203

Literature:

Physics:

- E. Ott: *Chaos in dynamical systems*. 2nd ed., Cambridge University Press, Cambridge UK (2002)
- H. Kantz, T. Schreiber: *Nonlinear time series analysis*. 2nd ed., Cambridge University Press, Cambridge (2003)
- A. Pikovsky, M. Rosenblum, J. Kurths: Synchronization: A universal concept in nonlinear science, Cambridge University Press, Cambridge (2001)

Medicine:

- E. Basar, T.H. Bullock: *Brain Dynamics*. Series in Brain Dynamics Vol. 2, Springer, Berlin (1989)
- E. Basar: Chaos in Brain Function. Springer, Berlin (1990)
- E.R. Kandel, J.H. Schwartz, T.M. Jessell: *Principles of Neural Science*. 4th ed., Elsevier North Holland, New York (2000)

Literature:

Signal processing, Statistics, Computing:

- A.V. Oppenheim; A.S. Willsky: Signals and systems. Prentice Hall, 1996
- J.S. Bendat, A.G. Piersol: *Random Data: Analysis and measurement procedures*. 4th ed., Wiley Interscience, New York, 2010
- B.R. Martin: Statistics for Physicists. Academic Press, London, New York, 1971
- P.R. Bevington: *Data reduction and error analysis for the physical sciences*. McGraw-Hill, New York, 2002.
- W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling: *Numerical Recipes. The art of scientific computing*. 3rd ed., Cambridge University Press, Cambridge, 2007

TISEAN: Nonlinear Time Series Analysis

https://www.pks.mpg.de/~tisean/

TISEAN Nonlinear Time Series Analysis

Rainer Hegger Holger Kantz Thomas Schreiber

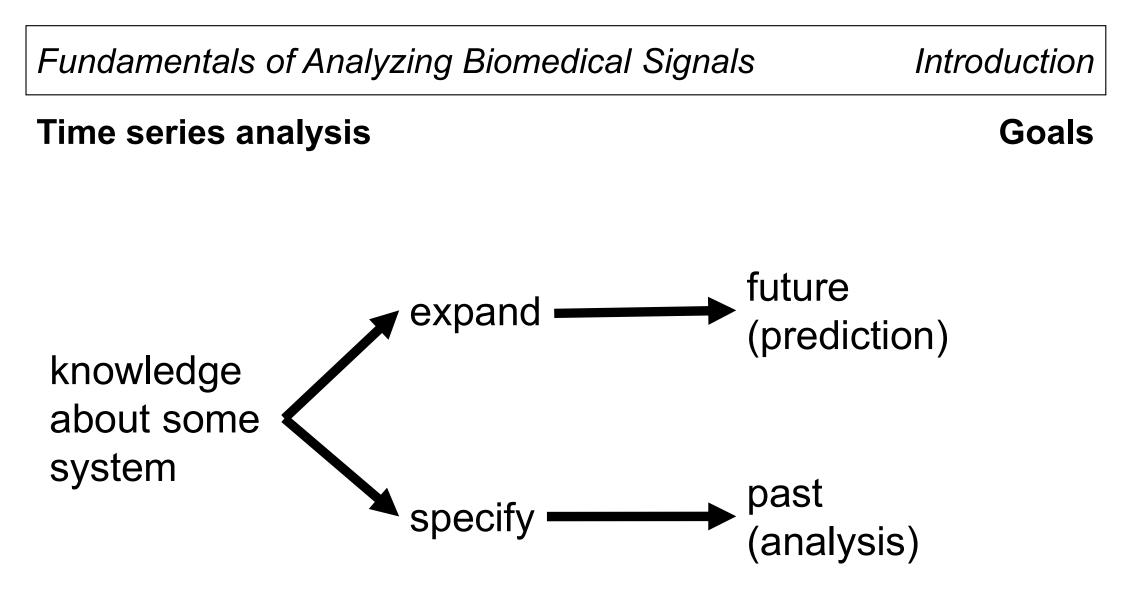
Go to Version 3.0.1 (released March 2007)

Go to Version 2.1 (released December 2000)

Introduction

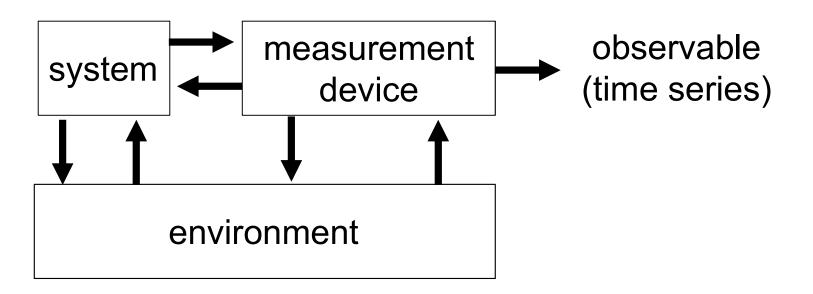
Historical overview:

- 1778 P. Laplace (Laplace's demon, "everything is predictable")
- 1880 W. Sierpinski (non-Euclidian geometry, "mathematical monster")
- 1892 H. Poincare (three-body problem, dimension of manifolds)
- 1919 F. Hausdorff (extension of notion of dimension)
- 1963 E. Lorenz (weather forecasting)
- 1967 B. Mandelbrot (fractals, self similarity)
- 1975 J. Yorke (deterministic chaos)
- 1977/78 routes into chaos:
 - S. Grossmann/S. Thomae (period doubling)
 - M. Feigenbaum (Feigenbaum constant),
 - Newhouse-Ruelle-Takens route
- 1981 D. Ruelle (strange attactors),
 - P. Grassberger / I. Procaccia (correlation dimension)
 - F. Takens (state space reconstruction)
- since 1990 nonlinear time series analysis



Time series analysis

Measurement



note: interactions !

- what is a suitable device ?
- what is a good observable ?
- what is a suitable environment?
- interfaces ?

Time series analysis

Time series

time series: - sequence of data (length *N*)

- measurement or simulation (model)
- time-dependent

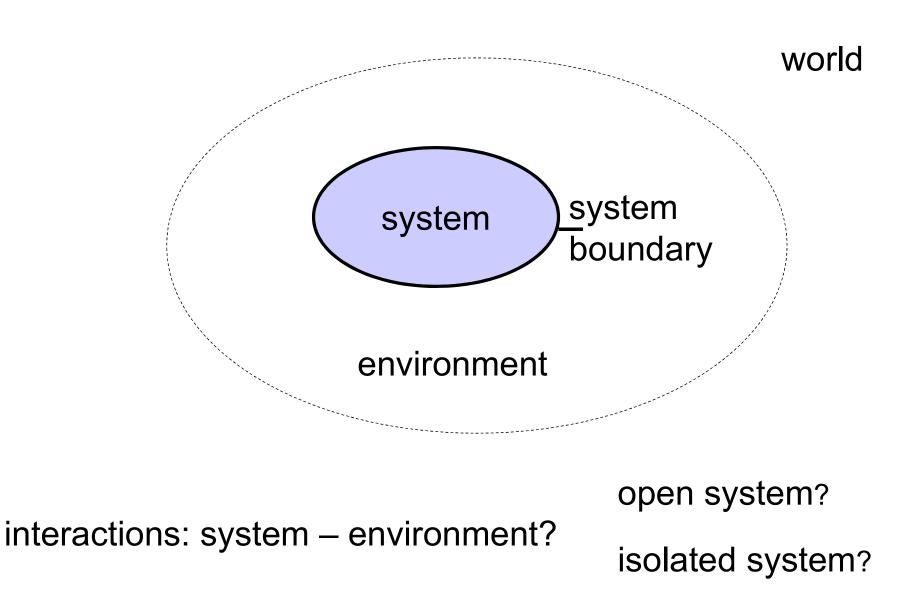
$$(v_i, v_{i+\Delta t}, \ldots, v_{N\Delta t})$$

∆t - temporal distance between successive data points
- sampling interval (measurement)

Fundamentals of Analyzing Biomedical Signals		als Introduction
Time series analysis		Time series
	experiment	model simulation
length of time series	(mostly) limited	user-defined
sampling interval	limited	user-defined
precision	A/D converter noise	user-defined

Introduction

System



Introduction

Dynamical system

- system under influence of some force ($\delta \nu \nu \alpha \mu \nu \sigma$ = force)
- time-dependent system states
- state changes depend on current state

deterministic

same initial states ↓ same evolution

stochastic

same initial states ↓ random evolution

Dynamical system

- characterized by time-dependent state variables $\mathbf{x}(t) \in \mathbb{R}^d$
- temporal evolution of state variables:

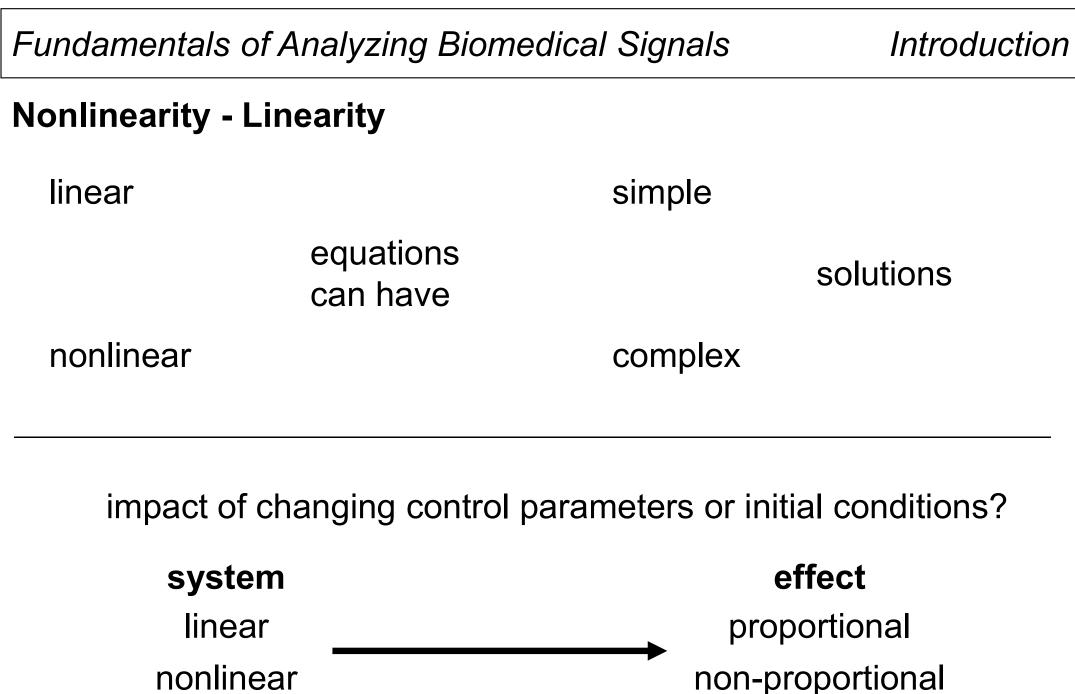
continuous case: set of (first-order) ordinary differential equations with initial conditions $\mathbf{x}(0) = \mathbf{x}(t_0)$

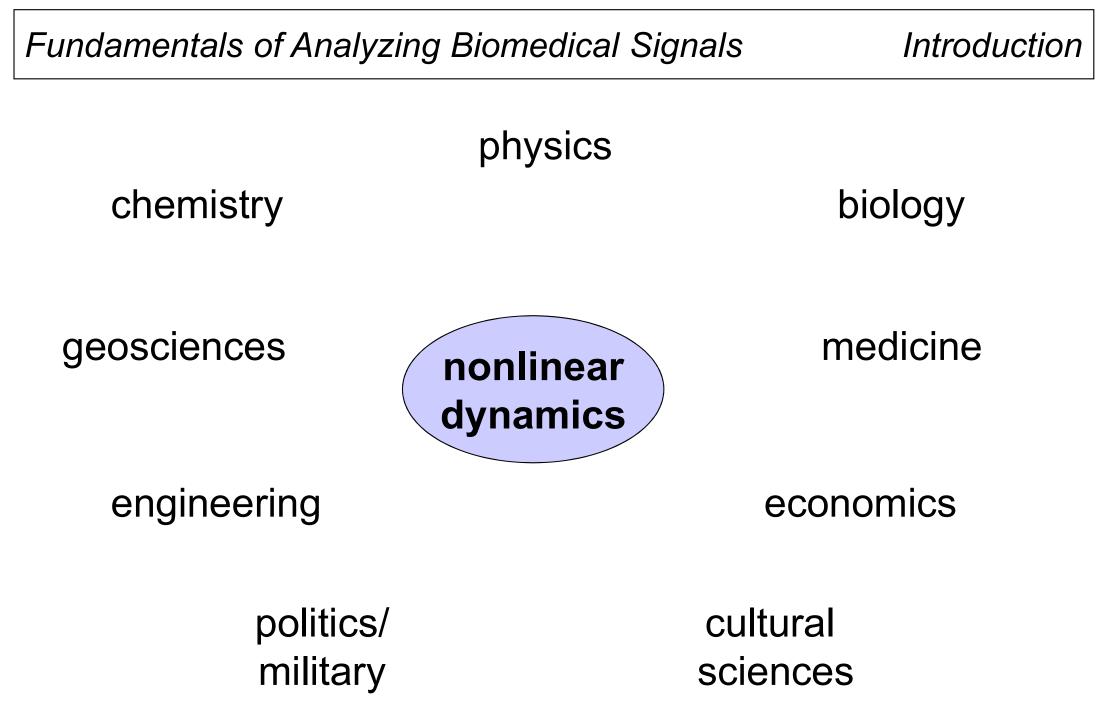
$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = f(t, \mathbf{x}(t), \beta)$$

discrete case: set of difference equations (mapping) with initial conditions $\mathbf{x}_0 = \mathbf{x}_{t_0}$

$$\mathbf{x}_{t+\Delta t} = F(T, \mathbf{x}_t, \beta)$$

with d = dimension of system; β = control parameter; f, F = nonlinear functions in case of nonlinear systems





condensed matter physics

pattern formation phase transitions spin waves

fluid mechanics

transition to turbulent motion crystal growth surface of liquids

laser physics

laser instabilities semiconductor laser coupled laser

mechanics

nonlinear oscillators coupled/forced pendulums magneto-mechanic oscillators torsion bar

nonlinear dynamics in physics

optics

opto-galvanic systems nonlinear optics

acoustics

sound generation with:

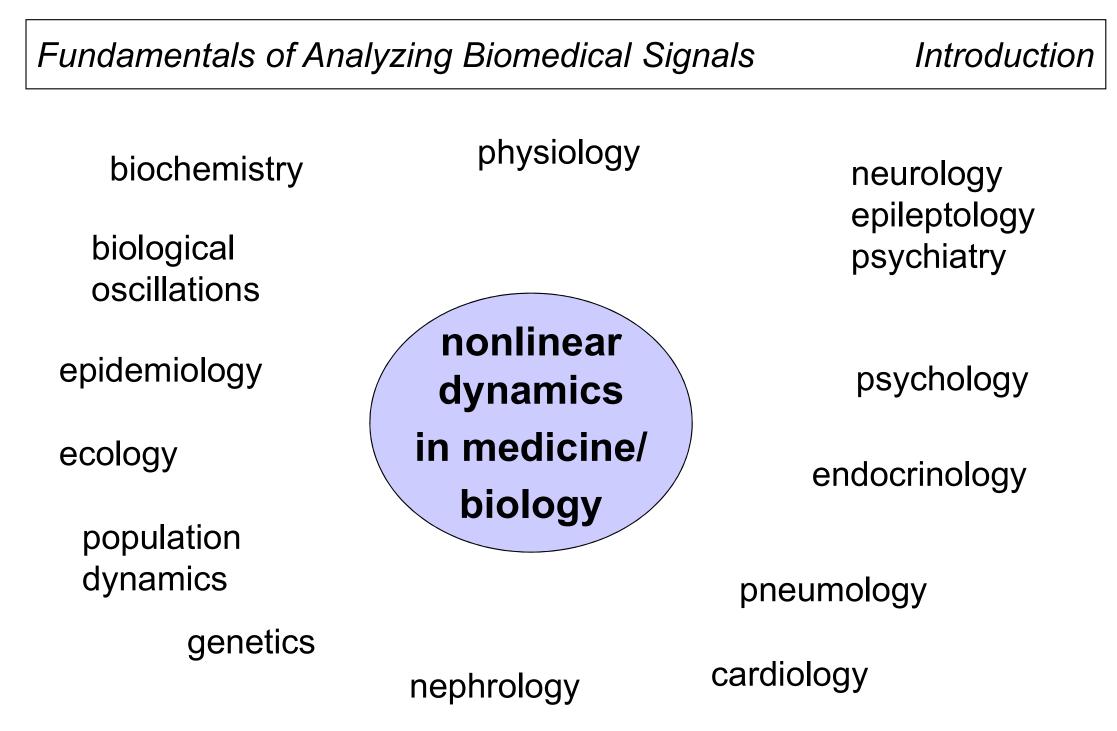
- laser
- musical instruments

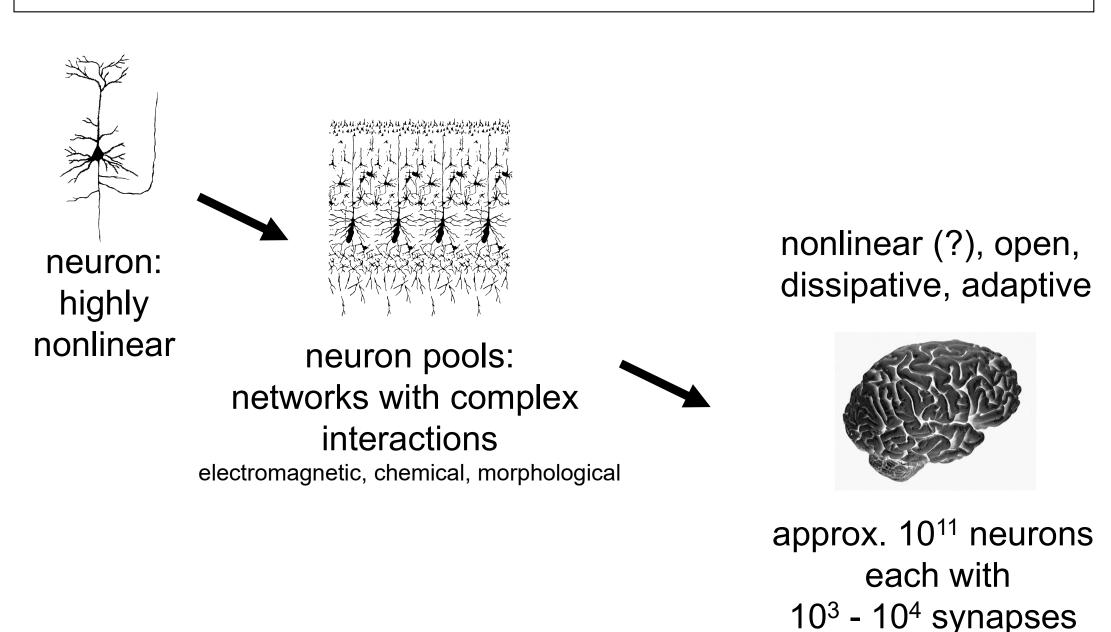
astrophysics

solar system motion of stars sun spots pulsar/quasar distribution of galaxies

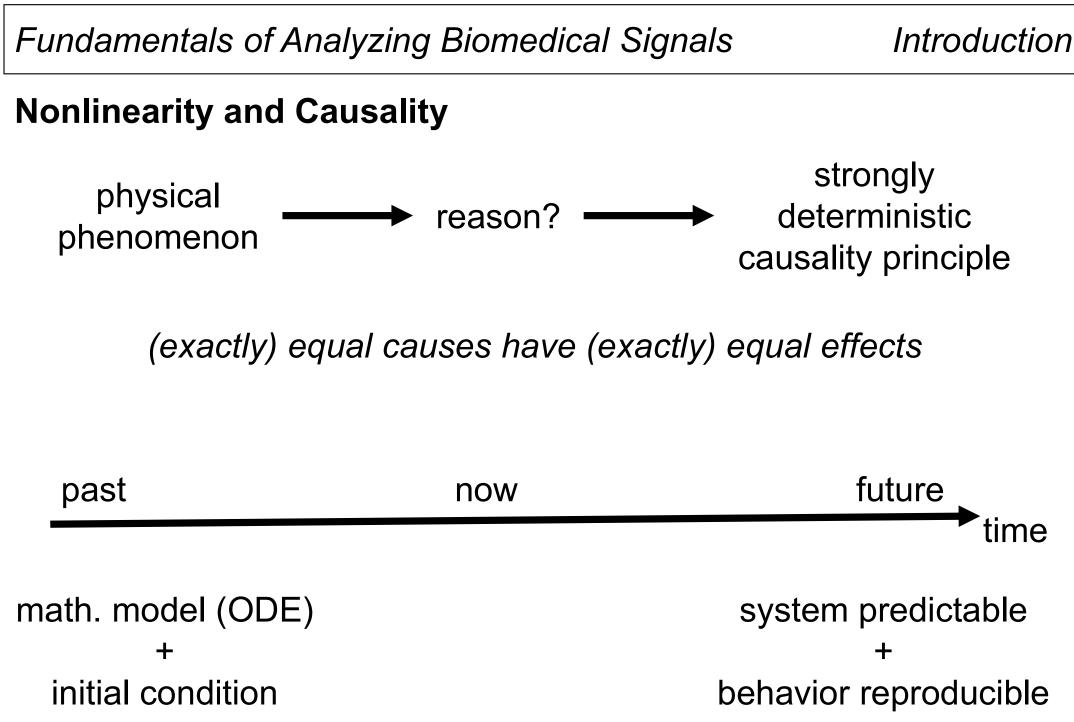
plasma physics

oscillations in gas discharges pattern formation plasma waves

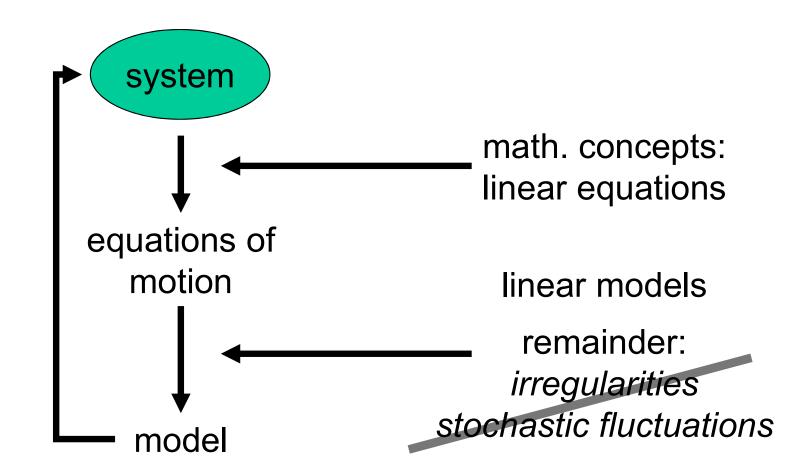




Introduction



The pragmatic perspective of a linear nature



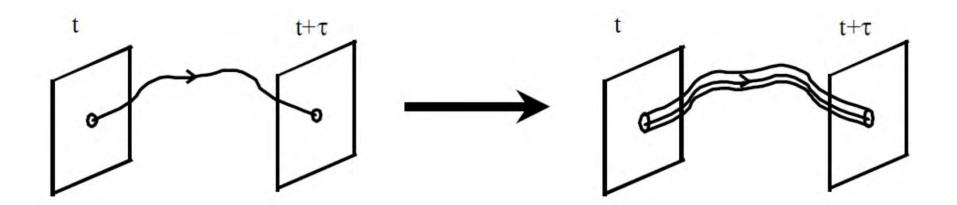
this perspective challenged by Poincaré and Sierpinski

Introduction

Nonlinearity and Causality

Linear Systems

weak causality: equal causes \rightarrow equal effects strong causality: similar causes \rightarrow similar effects



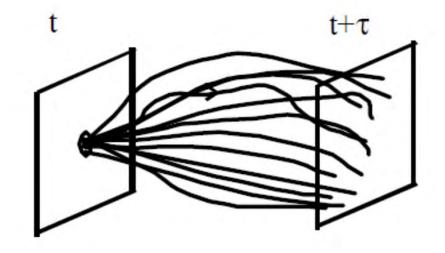
strong idealization; does not account for experimental conditions includes weak causality; accounts for experimental conditions: tiny deviations from initial conditions, weak perturbations, systematic errors, ...

Introduction

Nonlinearity and Causality

Nonlinear Systems

violation of strong causality: similar causes \rightarrow vastly different effects



- sensitive dependence on initial conditions
- deterministic chaos
- pattern formation
- "the whole is more than the sum of its parts" (Aristoteles)
- self-organization

Processes and their Characteristics

regular process	chaotic process	stochastic process
deterministic	deterministic	stochastic (noise/randomness)
long-term predictable	predictable	non-predictable
strong causality	violation of strong causality	no causal relationships
	nonlinearity	

Deterministic Chaos

Chaos (colloquially)

- disordered state and irregularity

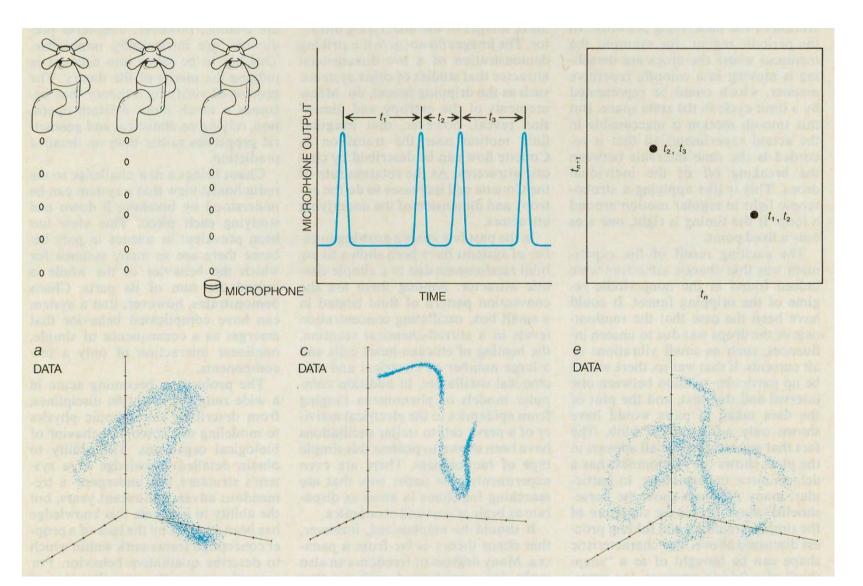
Deterministic Chaos

- irregular (non-periodic) behavior
- non-predictable or for some short time horizon only
- deterministic equations of motion (in contrast to stochasticity)
- instabilities and recurrences

Introduction

Deterministic Chaos

dripping faucet

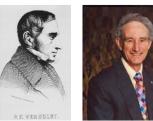


The Science Frontier Express Series

Introduction

Deterministic Chaos

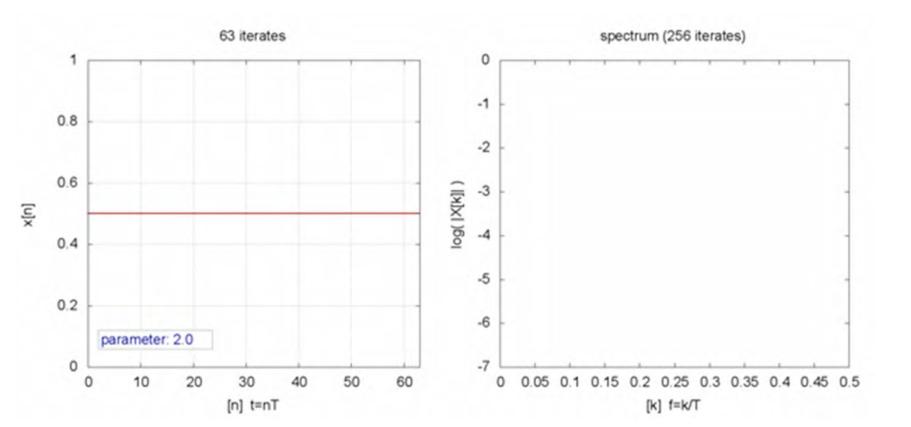
period doubling



"chaotic behavior can arise from very simple non-linear dynamical equations": *logistic map* (model for population growth, 1837)

 $x_{n+1} = rx_n(1-x_n); \ x_n \in [0,1]; \ r \in [0,4]$

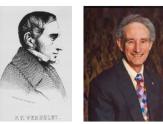
P.F. Verhulst R. May



Introduction

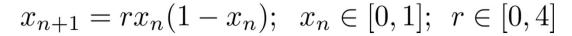
Deterministic Chaos

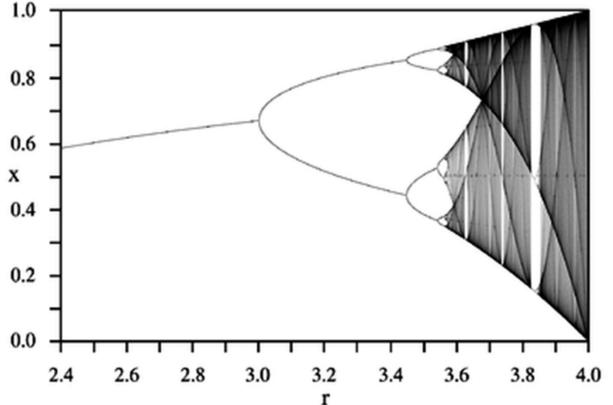
period doubling



"chaotic behavior can arise from very simple non-linear dynamical equations": *logistic map* (model for population growth, 1837)

P.F. Verhulst R. May





bifurcation diagram

- period-doubling route to chaos
- period-3 implies chaos
- islands of stability
- periodicities within chaos
- self-similarity

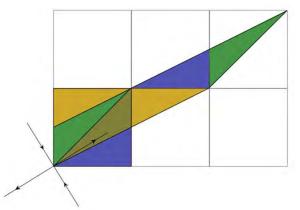
Deterministic Chaos

V. Arnold (1937-2010)

Arnold's cat map:

chaotic map from the torus into itself: $\Gamma:\mathbb{T}^2\to\mathbb{T}^2$

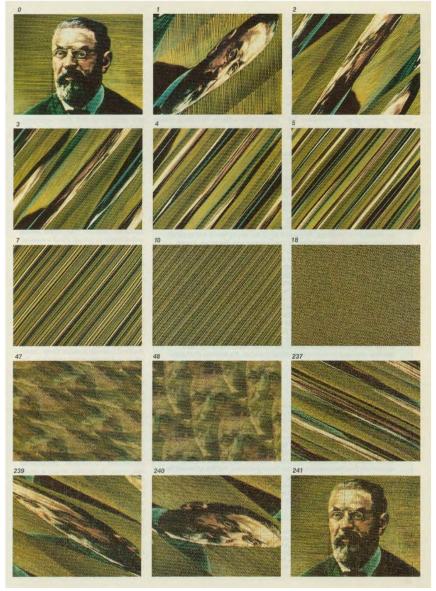
$$\Gamma: (x, y) \to (2x + y, x + y) \mod 1$$



deterministic operations:

- stretching
- bending
- folding (nonlinear)

recurrence and self-similarity



Nonlinear dynamical systems

- can be described by nonlinear ODEs. However, no analytic solutions exist!
- show qualitatively rich dynamics:
 drastic changes upon changes of control parameters (bifurcation)
 deterministic chaos
- long-term behavior can be assessed by investigating the phase-space (state-space)