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skewness  0.004; kurtosis  -0.71 skewness  2.6; kurtosis  9.7

indication for nonlinearity?
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Brief Recap: Need for Nonlinear Methods
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When faced with time series from nonlinear systems, 
linear methods

- fail to detect the dynamics / structure in the data

- do not tell much about the dynamics

- cannot distinguish chaos from noise

→ Structure can be seen in attractors.
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Brief Recap: Attractor
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states of the dynamics for → 

type of dynamics can be deduced from topology of attractor:

• point → fixed-point dynamics
• limit cycle → periodic dynamics
• torus → quasiperiodic dynamics
• strange attractor → chaos

attractor reflects further central properties of dynamics.
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Strange Attractors
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Need for Phase-Space Reconstruction
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Directly observing the phase space / attractor requires access 
to all the system’s dynamical variables

But:
- often, only one dynamical variable accessible

(or a time series thereof)

- dimension of phase space is often unknown

Can we obtain from a single time series a set that preserves 
important properties of the attractor?
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Phase-Space Reconstruction good and bad
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from: G. Ansmann
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Phase-Space Reconstruction Topology
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original attractor
→ a d-manifold

measurement and reconstruction
→ a map

structure-preserving reconstruction
→ topology-preserving map → an embedding

embedding
a map is called an embedding, if:
- has full rank
- is a diffeomorphism:

is differentiable
exists and is differentiable
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Phase-Space Reconstruction Embeddings
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Strong Whitney embedding theorem

For m = 2d, there exists a map that is an embedding.

Problem:    usually unknown

Weak Whitney embedding theorem

For m > 2d+1, almost every continuously differentiable (C1) map 
is an embedding.

Problems:
- Often, we do not have m independent observables 
(redundant observables are one of the reasons for “almost every”)

• We do not know d
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Phase-Space Reconstruction Delay-Embeddings
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Idea:

- given time series v: v1, v2, …, vN of some system observable x
- derivatives (first, second, third, …) are not fully redundant.

- approximate derivatives with difference quotients:

etc.

vi, vi+1, … are not fully redundant

inverse Taylor expansion



14

Phase-Space Reconstruction Delay-Embeddings
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Takens’ Theorem:

- let with the index indicating time

- let denote the measurement function that maps the
system observable x to the time series v

If m > 2d+1,

is an embedding for almost all dynamics, embedding delays  and 
measurement functions h.  m denotes the embedding dimension.

Floris Takens
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Phase-Space Reconstruction Delay-Embeddings
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Takens’ Theorem and applications:

- given time series v: v1, v2, …, vN of some system observable x
- consider m-dimensional states (mapped from the attractor to the 

time series:

- for a proper embedding dimension and embedding delay , 
these states make up a topologically equivalent reconstruction of 
the attractor.
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Phase-Space Reconstruction Delay-Embeddings
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from: G. Ansmann

Example: Lorenz attractor
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Phase-Space Reconstruction Delay-Embeddings
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Example: brain dynamics
EEG (awake state)
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Phase-Space Reconstruction Delay-Embeddings
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Example: brain dynamics
EEG (epilepsy patient)
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Phase-Space Reconstruction Delay-Embeddings
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Example: brain dynamics

EEG (epileptic seizure)
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Dynamical Invariants

Important characteristics of the dynamics are invariant 
under the embedding transformation:

• Lyapunov exponents

• dimensions

• entropy

• …

Phase-Space Reconstruction Delay-Embeddings
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Fundamentals of Analyzing Biomedical Signals Phase Space

Identifying embedding parameter delay

Phase-Space Reconstruction Delay-Embeddings

requirement for an embedding:
not fully redundant

→ aforementioned theorems: almost every yields an embedding:

requirements for a good embedding:

• minimum redundancy of
(to unfold the attractor)

• reasonably small 
(to avoid folding the attractor onto itself)

(compare to: linear independence vs. orthogonality)
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Fundamentals of Analyzing Biomedical Signals Phase Space

Identifying embedding parameter delay

Phase-Space Reconstruction Delay-Embeddings

using zeros of the autocorrelation

Idea:

if autocorrelation = 0 for some delay 
vt and vt+ are linearly independent on average

→ choose the first zero of the autocorrelation  as embedding delay
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Identifying embedding parameter delay

Phase-Space Reconstruction Delay-Embeddings

using the first minimum of mutual information I
Idea: if common information for some delay  is minimum
vt and vt- are independent on average (also includes nonlinear
relationships)

where M1 and M2 denote measurements at times t and t-, and
is the Shannon entropy

→ choose the first minimum of the mutual information  as 
embedding delay

A. Fraser and H. Swinney, Independent coordinates for strange attractors from mutual information, Phys. Rev. A 33 (1986)
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Identifying embedding parameter delay

Phase-Space Reconstruction Delay-Embeddings

first minimum 
of mutual 
information I

A. Fraser and H. Swinney, Independent coordinates for strange attractors from mutual information, Phys. Rev. A 33 (1986)
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Identifying embedding parameter delay

Phase-Space Reconstruction Delay-Embeddings

- zeros of the autocorrelation function
- minima of the mutual information 
- many more

No method is perfect or commonly agreed upon.

Practically:
• try at least two methods
• judge by further analysis
• alternative for ≤ 3: visually inspect the attractor
• keep embedding window ( − 1) (time span in an embedded 

vector) constant
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Identifying embedding parameter dimension

Phase-Space Reconstruction Delay-Embeddings

embedding theorems define “sufficient” embedding dimension m

problem: dimension of system under study usually unknown 

choosing m overly high may hamper further analyses
(impact of noise, finite number of data points, computational 
complexity)

→ Need other ways to determine a good m
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Identifying embedding parameter dimension

Phase-Space Reconstruction Delay-Embeddings

Linear Dependence
idea:
• m is higher than necessary

attractor only covers a subspace of reconstruction space 
(e.g., circle in m = 3)

• check whether embedded vectors have full rank.

difficulties:
• noise acts in all directions
• assumes linear dependence → dependence may be nonlinear
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Identifying embedding parameter dimension

Phase-Space Reconstruction Delay-Embeddings

Asymptotic Invariants
idea:
• m too small wrong dynamical invariants (in general)

• m sufficient correct dynamical invariants

→ increase m until dynamical invariants converge

difficulties:
• criterion for convergence under real conditions 
(noise, finite number of data points, …)

• wrong (in general) is unpredictable
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Identifying embedding parameter dimension

Phase-Space Reconstruction Delay-Embeddings

False Nearest Neighbors

idea:
• m too small trajectories intersect

points close in reconstruction space that aren’t close in
actual phase space (false nearest neighbors)

→ increase m until false nearest neighbors vanish.

M. B. Kennel, R. Brown, and H. D. I. Abarbanel, Determining minimum embedding dimension using a geometrical construction, Phys. Rev. A 45 (1992)
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Identifying embedding parameter dimension

Phase-Space Reconstruction Delay-Embeddings

False Nearest Neighbors

practically:
• choose threshold for nearest neighbors
• NN(m): number of pairs of points in m-dimensional
reconstruction space that are closer than 

• NN(m + 1) < NN(m)
at least NN(m) − NN(m + 1) false nearest neighbors in 
the m-dimensional reconstruction.

difficulties:
number of true nearest neighbors large and fluctuating (noise).
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Summary

Phase-Space Reconstruction Delay-Embeddings

delay embedding allows to reconstruct attractor from single 
observable
• parameters and have to be carefully chosen
• reconstructed phase space may be used for:

- understanding
- prediction
- modelling
- …

• characteristics preserved by reconstruction:
dimensions, Lyapunov exponents, entropy, …
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Extensions

Phase-Space Reconstruction Delay-Embeddings

• multivariate time series

• different embedding delays for each component

• state-dependent embedding delays


