Phase Space

Phase Space

Reconstruction

Phase Space

Brief Recap: Need for Nonlinear Methods

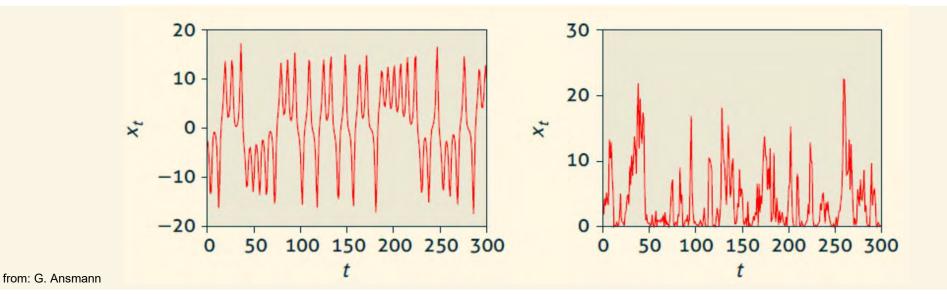
Lorenz oscillator

$$\dot{x} = 10(y-x)$$

$$\dot{y} = x(28-z) - y$$

$$\dot{z} = xy - \frac{8}{3}z$$

$$y_t = 0.8y_{t-1} + \epsilon_t$$
$$x_t = (1+y_t)^2$$



r

Brief Recap: Need for Nonlinear Methods

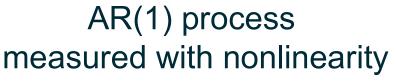
Lorenz oscillator

$$\dot{x} = 10(y-x)$$

$$\dot{y} = x(28-z) - y$$

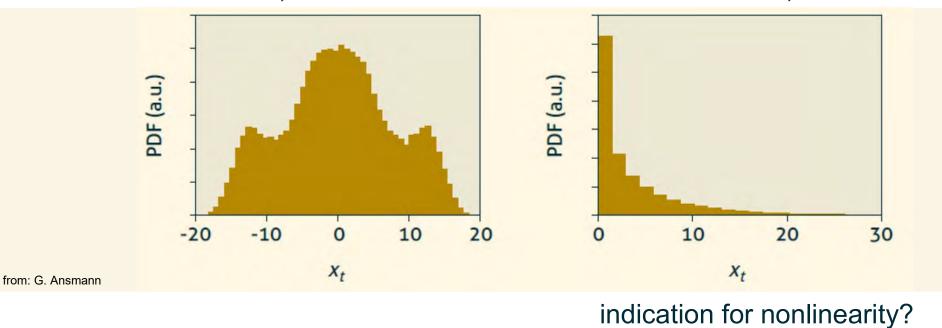
$$\dot{z} = xy - \frac{8}{3}z$$

skewness \approx 0.004; kurtosis \approx -0.71



$$y_t = 0.8y_{t-1} + \epsilon_t$$
$$x_t = (1+y_t)^2$$

skewness \approx 2.6; kurtosis \approx 9.7



Phase Space

Brief Recap: Need for Nonlinear Methods

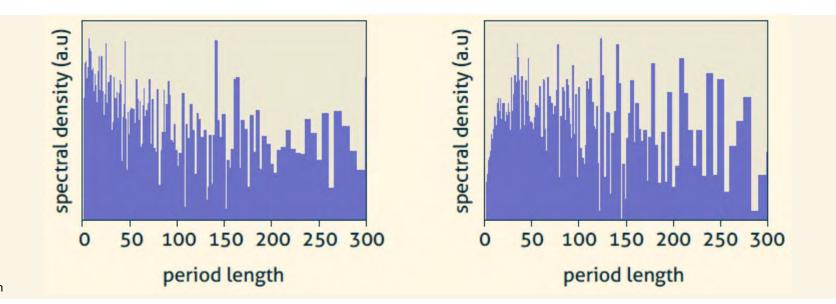
Lorenz oscillator

$$\dot{x} = 10(y-x)$$

$$\dot{y} = x(28-z) - y$$

$$\dot{z} = xy - \frac{8}{3}z$$

$$y_t = 0.8y_{t-1} + \epsilon_t$$
$$x_t = (1+y_t)^2$$



r

Phase Space

Brief Recap: Need for Nonlinear Methods

Lorenz oscillator

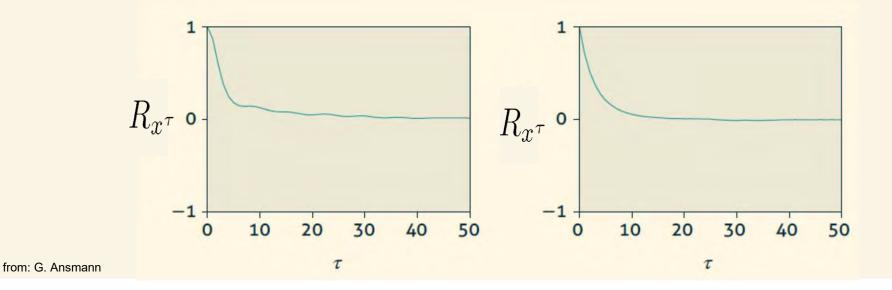
$$\dot{x} = 10(y-x)$$

$$\dot{y} = x(28-z) - y$$

$$\dot{z} = xy - \frac{8}{3}z$$

$$y_t = 0.8y_{t-1} + \epsilon_t$$

$$x_t = (1+y_t)^2$$



r

Brief Recap: Need for Nonlinear Methods

When faced with time series from nonlinear systems, linear methods

- fail to detect the dynamics / structure in the data
- do not tell much about the dynamics
- cannot distinguish chaos from noise

 \rightarrow Structure can be seen in attractors.

Brief Recap: Attractor

states of the dynamics for $t \to \infty$

type of dynamics can be deduced from topology of attractor:

- point \rightarrow fixed-point dynamics
- limit cycle \rightarrow periodic dynamics
- torus \rightarrow quasiperiodic dynamics
- strange attractor \rightarrow chaos

attractor reflects further central properties of dynamics.

Phase Space

Strange Attractors

8

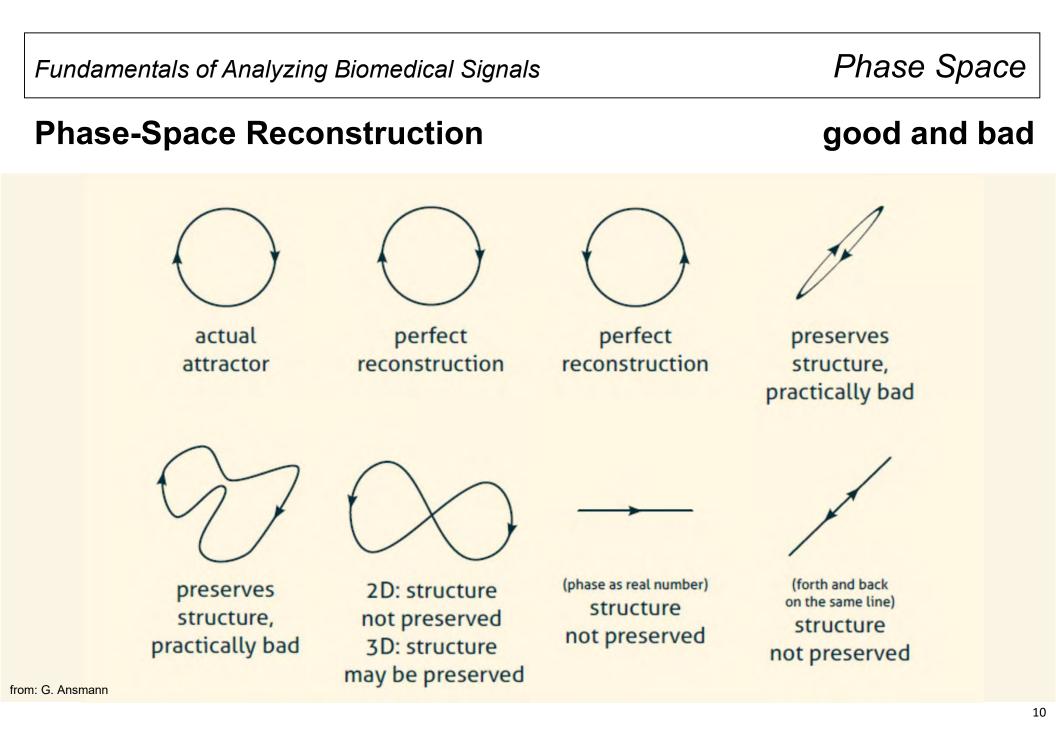
Need for Phase-Space Reconstruction

Directly observing the phase space / attractor requires access to all the system's dynamical variables

But:

- often, only one dynamical variable accessible (or a time series thereof)
- dimension of phase space is often unknown

Can we obtain from a single time series a set that preserves important properties of the attractor?



original attractor

ightarrow a *d*-manifold $\mathcal{A} \subset \mathbb{R}^d$

 $\begin{array}{l} \textit{measurement and reconstruction} \\ \rightarrow \textit{a map } \phi: \mathcal{A} \rightarrow \mathbb{R}^{m} \end{array} \end{array}$

structure-preserving reconstruction \rightarrow topology-preserving map \rightarrow an embedding

embedding

a map $\phi: \mathcal{A} \to \mathbb{R}^m$ is called an *embedding*, if:

- - $abla \phi$ has full rank
- ϕ is a diffeomorphism:
 - ϕ is differentiable
 - ϕ^{-1} exists and is differentiable

Phase Space

Topology

Embeddings

Strong Whitney embedding theorem

For m = 2d, there exists a map $\phi : \mathcal{A} \to \mathbb{R}^m$ that is an embedding. Problem: ϕ usually unknown

Weak Whitney embedding theorem

For m > 2d+1, almost every continuously differentiable (C¹) map $\phi : \mathcal{A} \to \mathbb{R}^m$ is an embedding.

Problems:

- Often, we do not have m independent observables (redundant observables are one of the reasons for "almost every")
- \bullet We do not know d

Delay-Embeddings

Idea:

- given time series v: v_1 , v_2 , ..., v_N of some system observable x
- derivatives (first, second, third, ...) are not fully redundant.
- approximate derivatives with difference quotients:

$$\dot{v}_i = v_{i+1} - v_i$$

 $\ddot{v}_i = v_{i+2} - 2v_{i+1} + v_i$
etc.

 $\sim v_{i}, v_{i+1}, \dots$ are not fully redundant \sim inverse Taylor expansion

Phase Space

Phase-Space Reconstruction

Delay-Embeddings

Takens' Theorem:

- let $\mathcal{A} =: \{x_1, x_2, \ldots, x_N\}$ with the index indicating time
- let $h: \mathcal{A} \to \mathbb{R}$ denote the measurement function that maps the system observable \mathbf{x} to the time series \mathbf{v}

If m > 2d + 1,

$$\phi_{h,\tau} := (v_i, v_{i-\tau}, \dots, v_{i-(m-1)\tau})$$

is an embedding for almost all dynamics, *embedding delays* τ and measurement functions *h*. *m* denotes the *embedding dimension*.

Delay-Embeddings

Takens' Theorem and applications:

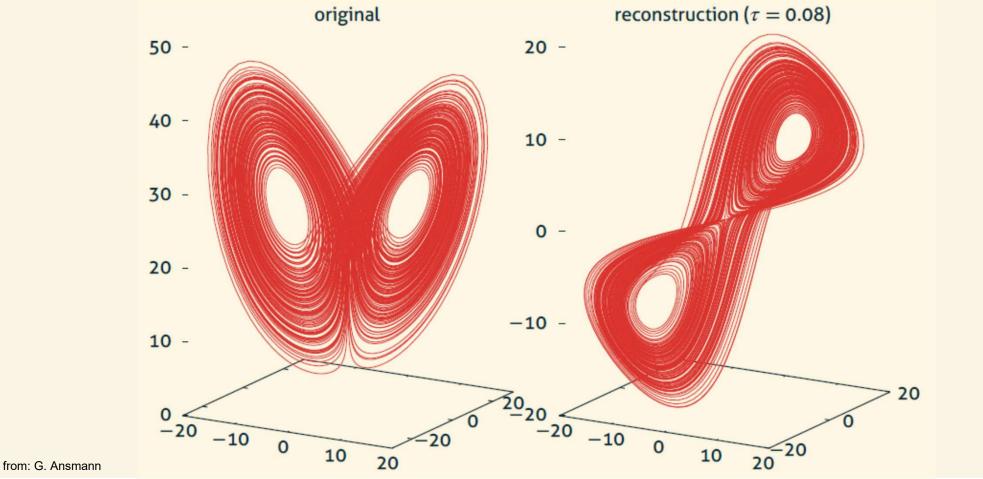
- given time series v: v_1 , v_2 , ..., v_N of some system observable x
- consider *m*-dimensional states (mapped from the attractor to the time series:

$$(v_i, v_{i-\tau}, v_{i-2\tau}, \dots, v_{i-(m-1)\tau})^T$$

 for a proper embedding dimension *m* and embedding delay *τ*, these states make up a topologically equivalent reconstruction of the attractor.

Delay-Embeddings

Example: Lorenz attractor

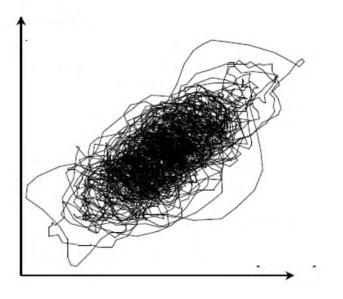


Phase Space

Phase-Space Reconstruction

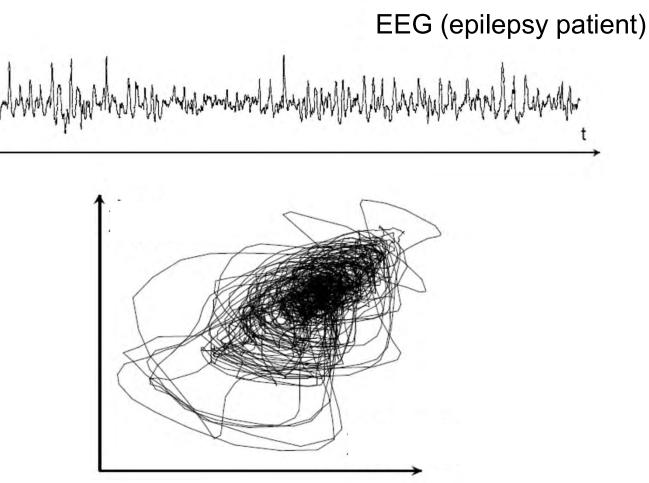
Delay-Embeddings

Example: brain dynamics



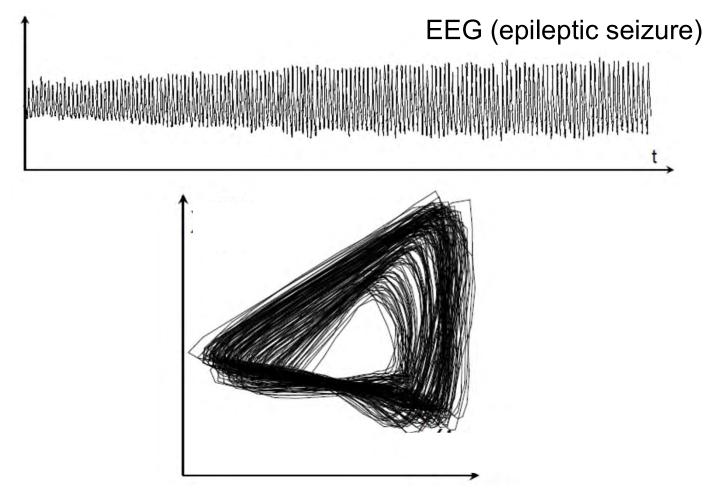
Delay-Embeddings

Example: brain dynamics



Delay-Embeddings

Example: brain dynamics



Phase Space

Phase-Space Reconstruction

Delay-Embeddings

Dynamical Invariants

Important characteristics of the dynamics are invariant under the embedding transformation:

- Lyapunov exponents
- dimensions
- entropy
- . . .

Phase-Space Reconstruction

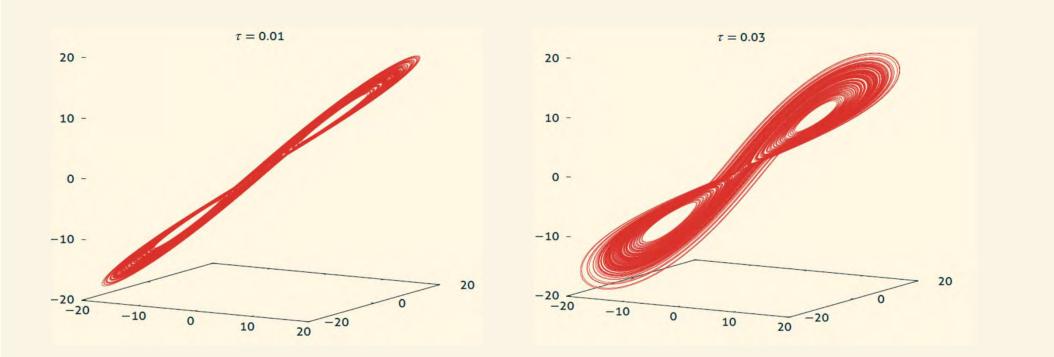
Identifying embedding parameter

example: Lorenz attractor

Delay-Embeddings

Phase Space

delay



Phase-Space Reconstruction

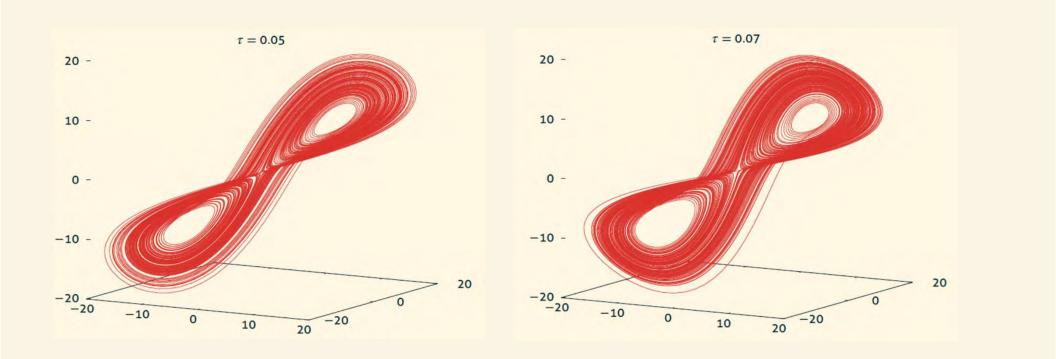
Identifying embedding parameter

example: Lorenz attractor

Phase Space

Delay-Embeddings

delay



Phase-Space Reconstruction

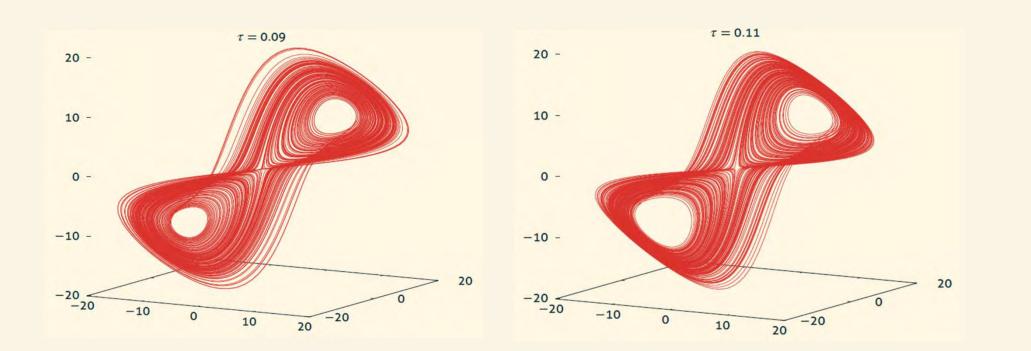
Identifying embedding parameter

example: Lorenz attractor

Delay-Embeddings

Phase Space

delay



Phase-Space Reconstruction

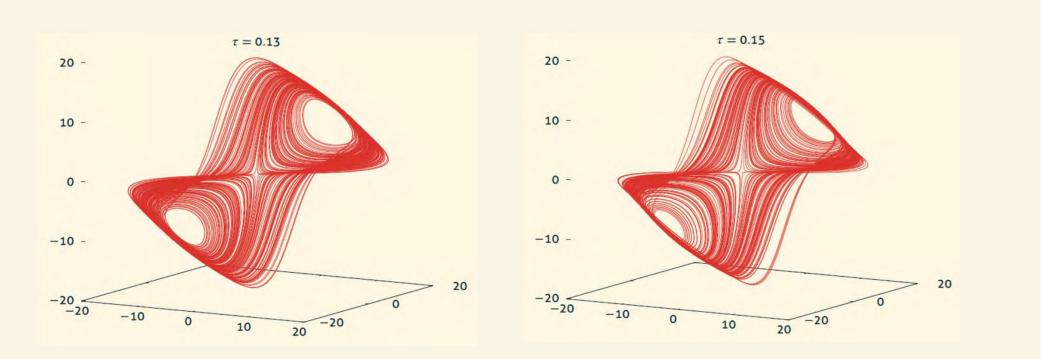
Identifying embedding parameter

example: Lorenz attractor

Delay-Embeddings

Phase Space

delay



Phase-Space Reconstruction

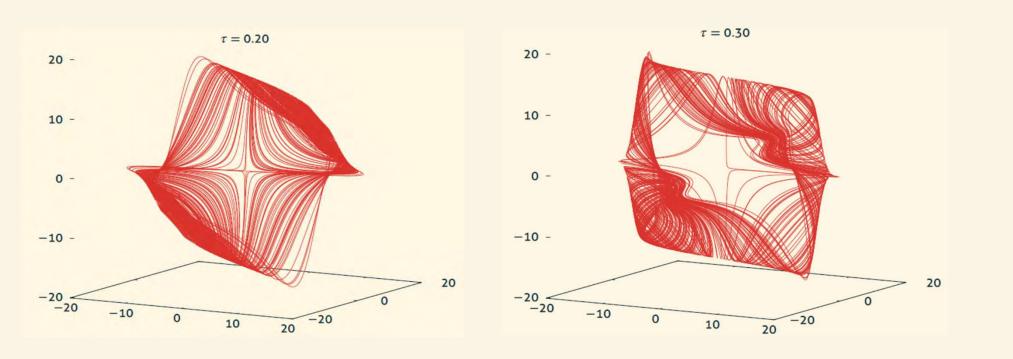
Identifying embedding parameter

example: Lorenz attractor

Delay-Embeddings

Phase Space

delay



Delay-Embeddings

Identifying embedding parameter

delay

requirement for an embedding: $(v_i, v_{i-\tau}, v_{i-2\tau}, \dots, v_{i-(m-1)\tau})$ not fully redundant

 \rightarrow aforementioned theorems: almost every τ yields an embedding:

requirements for a **good embedding**:

- minimum redundancy of $(v_i, v_{i-\tau}, v_{i-2\tau}, \dots, v_{i-(m-1)\tau})$ (to unfold the attractor)
- reasonably small τ (to avoid folding the attractor onto itself)

(compare to: linear independence vs. orthogonality)

Phase-Space Reconstruction

Identifying embedding parameter

using zeros of the autocorrelation

Idea:

if autocorrelation = 0 for some delay $\Delta \Rightarrow$ v_t and $v_{t+\Lambda}$ are **linearly** independent on average

 \rightarrow choose the first zero of the autocorrelation Δ as embedding delay

Phase Space

Delay-Embeddings

delay

Identifying embedding parameter

using the first minimum of mutual information *I* **Idea**: if common information for some delay Δ is minimum \Rightarrow v_t and $v_{t-\Delta}$ are independent on average (also includes **nonlinear** relationships)

 $I(M_1, M_2) = H(M_1) - H(M_1|M_2) = H(M_1) + H(M_2) - H(M_1, M_2)$

where M_1 and M_2 denote measurements at times *t* and *t*- Δ , and $H = -\sum_i p_i \log p_i$ is the Shannon entropy

 \rightarrow choose the first minimum of the mutual information Δ as embedding delay

Delay-Embeddings

delay

Phase-Space Reconstruction

Delay-Embeddings

Phase Space

delay

Identifying embedding parameter

first minimum of mutual information *I*

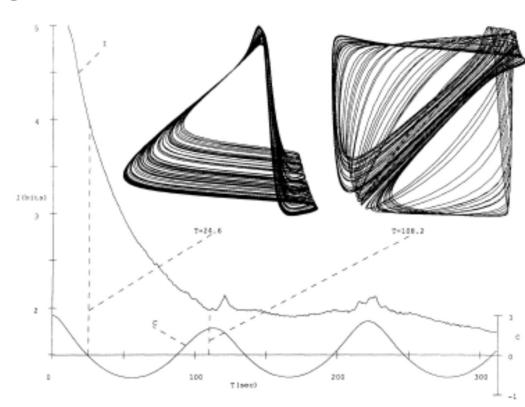


FIG. 1. Phase portraits of the Roux attractor (Ref. 3) in the Belousov-Zhabotinskii reaction. The dependence of the mutual information I and the autocorrelation function C on T are shown for calculations over 32 768 points. The coordinates used in constructing the portrait on the left are linearly independent (zero autocorrelation), while the coordinates used in the portrait on the right are more generally independent (local minimum of mutual information).

A. Fraser and H. Swinney, Independent coordinates for strange attractors from mutual information, Phys. Rev. A 33 (1986)

Identifying embedding parameter

- zeros of the autocorrelation function
- minima of the mutual information
- many more

No method is perfect or commonly agreed upon.

Practically:

- try at least two methods
- judge by further analysis
- alternative for $m \leq 3$: visually inspect the attractor
- keep embedding window $(m 1)\tau$ (time span in an embedded vector) constant

. _

Phase Space

Delay-Embeddings

delay

Identifying embedding parameter

embedding theorems define "sufficient" embedding dimension *m* problem: dimension of system under study usually unknown

choosing *m* overly high may hamper further analyses (impact of noise, finite number of data points, computational complexity)

 \rightarrow Need other ways to determine a good m

Phase Space

dimension

Delay-Embeddings

32

Fundamentals of Analyzing Biomedical Signals

Phase-Space Reconstruction

Identifying embedding parameter

Linear Dependence

idea:

- *m* is higher than necessary
- \Rightarrow attractor only covers a subspace of reconstruction space (e.g., circle in m = 3)
- check whether embedded vectors have full rank.

difficulties:

- noise acts in all directions
- assumes linear dependence \rightarrow dependence may be nonlinear

Delay-Embeddings

dimension

Phase Space

Identifying embedding parameter

Asymptotic Invariants

idea:

- *m* too small \Rightarrow wrong dynamical invariants (in general)
- m sufficient \Rightarrow correct dynamical invariants
- \rightarrow increase *m* until dynamical invariants converge

difficulties:

- criterion for convergence under real conditions (noise, finite number of data points, ...)
- wrong (in general) is unpredictable

Phase Space

- -

dimension

Delay-Embeddings

M. B. Kennel, R. Brown, and H. D. I. Abarbanel, *Determining minimum embedding dimension using a geometrical construction*, Phys. Rev. A 45 (1992)

34

Fundamentals of Analyzing Biomedical Signals

Phase-Space Reconstruction

Identifying embedding parameter False Nearest Neighbors

idea:

- *m* too small \Rightarrow trajectories intersect
- ⇒ points close in reconstruction space that aren't close in actual phase space (false nearest neighbors)

 \rightarrow increase *m* until false nearest neighbors vanish.

Phase Space

dimension

Identifying embedding parameter

False Nearest Neighbors

practically:

- choose threshold ε for nearest neighbors
- NN(m): number of pairs of points in *m*-dimensional reconstruction space that are closer than ε
- NN(m + 1) < NN(m)
- \Rightarrow at least NN(m) NN(m + 1) false nearest neighbors in the *m*-dimensional reconstruction.

difficulties:

number of true nearest neighbors large and fluctuating (noise).

35

Delay-Embeddings

dimension

Delay-Embeddings

Summary

delay embedding allows to reconstruct attractor from single observable

- parameters m and τ have to be carefully chosen
- reconstructed phase space may be used for:
 - understanding
 - prediction
 - modelling
 - . . .
- characteristics preserved by reconstruction:

dimensions, Lyapunov exponents, entropy, ...

Delay-Embeddings

Extensions

- multivariate time series
- different embedding delays for each component
- state-dependent embedding delays