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Euclidean geometry

- characterization of some geometric object
- integer dimension

object dimension

point 0
line 1
area 2
volume 3
n-cube n

- number of degrees of freedom for characterization

Time series analysis: minimum number of equations needed
to model a physical system, system complexity, number of degrees
of freedom (see later)
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Euclidean geometry and generalized dimension

Idea:

If you multiply all lengths by ,

• lengths will change by a factor 
• areas will change by a factor 2

• volumes will change by a factor 3

• …

→ determine dimension by exponent of content-scaling
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Non-Euclidean geometry

> generalized concept (F. Hausdorff, 1919)
> dimension of some non-Euclidean object in an m-dim. space
> idea:

- cover object in m-dim. space with hypercubes of side length 
- determine minimum number N() of hypercubes necessary to fully 

cover object
- we find:

- Hausdorff dimension, fractal dimension, box-counting dimension
(D0 = DH in most cases)
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Hausdorff dimension of a line
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Hausdorff dimension of Cantor set

G. CantorH.J.S. Smith
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Hausdorff dimension of Cantor set

G. CantorH.J.S. Smith
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Fractals

Def.: a set F is called a fractal, if

- F has some fine structure

- F is irregular

- F shows self-similarity (a subset of F is similar to F)

- fractal (Hausdorff-Besicovitch) dimension strictly exceeds
the topological dimension

Applications:

many natural structures, modelling, technology, art, …

Benoît B. Mandelbrot
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Hausdorff and topological dimension of Cantor set

G. CantorH.J.S. Smith

Length L (topological dimension)
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Fractals

Q: What does the “B.” in “Benoît B. Mandelbrot” stand for?

A: “Benoît B. Mandelbrot”

possibly not a joke

Benoît B. Mandelbrot
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Fractals and the Coastline Paradox
If the coastline of Great 
Britain is measured 
with a ruler of 100 km 
length, then the length 
of the coastline is about 
2800 km. 
With a ruler of 50 km 
length, the total length 
is about 3400 km, i.e. 
600 km longer.
For rulers with smaller 
length, the length of the 
coastline diverges to 
infinity
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Some Fractals and their dimensions

Cantor set 
(log3(2)=0.6309)

dendrite of Julia set 
(1.2)

Koch curve 
(log3(4)=1.2619)

boundary of dragon curve 
(1.5236) Sierpinski triangle

(1.5849)

Hexaflake
(log3(7)=1.7712)

Sierpinski carpet
(log3(8)=1.8928)

Menger sponge
(log3(20)=2.7268)

fractal pyramid
(log2(5)=2.3219)
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Some Natural Fractals

Romanesco broccoli lung blood vessels mouse brain

fern

river delta

dandelion
bolt

14
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Some Natural Fractals
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Technical Fractals (an example)

fractal grids to generate turbulent flow

S. Weitemeyer et al. Multi-scale generation of turbulence with fractal grids and an active grid. Fluid Dynamics Research  45(6):061407, 2013

towards “fractal wind turbine blades”
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Fractals and Art

20Physics News 1999
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Ikeda map
(1.7)

Rössler system
(2.01)

Lorenz system
(2.06)

Hènon map
(1.261)

Zaslavskii map
(1.39 ?)
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- estimating dimensions in high-dimensional space via box-counting
is hard

- box counting ignores how densely the boxes are populated
- idea: weight boxes by probability pi to find state in box i

Rényi dimensions, q-dimensions
- partition state space into M hypercubes (boxes) of side length 
- estimate probability by
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D0 counts non-empty boxes
D1 measures gain of information to find state in box i
if D0= D1, attractor is homogeneous
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dimension of attractors:

• D : strong indicator for nonlinearity (chaotic dynamics)

(D diverges for purely stochastic dynamics)

• characterizes self-similarity, complexity

• provides hints for modelling (degrees of freedom, attractor structure)

• sanity check via embedding theorems
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dimension from time series:

we have:

• replace limes by slope in double-logarithmic plot

• approximate 

• approximate sum over probabilities by “correlation sum”:

counts number of point closer than 
P. Grassberger and I. Procaccia, Physica D 9, 198 (1983); Phys. Rev. Lett. 50, 346 (1983). 
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dimension from time series:

correlation dimension:

• quickest to calculate

P. Grassberger and I. Procaccia, Physica D 9, 198 (1983); Phys. Rev. Lett. 50, 346 (1983). 
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dimension from time series: example: sine wave

from: G. Ansmann

C2
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dimension from time series: example: sine wave

from: G. Ansmann

D2
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dimension from time series: example: Gaussian noise

from: G. Ansmann

C2



Fundamentals of Analyzing Biomedical Signals Dimensions

Generalized dimensions Rényi dimensions

30
from: G. Ansmann

D2

dimension from time series: example: Gaussian noise
D2 ~ m
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dimension from time series: example: Hénon map
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dimension from time series: example: Hénon map
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dimension from time series: example: Hénon map
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dimension from time series: example: Hénon map



Fundamentals of Analyzing Biomedical Signals Dimensions

Generalized dimensions Rényi dimensions

38
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dimension from time series: example: Hénon map

literature:
D2 ~1.26

D2
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dimension from time series: 

dimension depends on the scope

How many dimensional is a plate of spaghetti?
Zero when seen from a long distance,
two on the scale of the plate,
one on the scale of the individual noodles
and three inside a noodle.
Maccaroni is even worse.

attributed to Peter Grassberger
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dimension from time series: example: torus

simulating maccaroni: sum of two incommensurable sine 
waves (tube/torus) and some noise (dough):

from: G. Ansmann
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dimension from time series: example: torus

from: G. Ansmann

C2
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dimension from time series: example: torus

from: G. Ansmann

C2
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dimension from time series: example: torus

from: G. Ansmann

D2
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field applications

- number of data points (lim N  )
- data precision (lim   0)
- strong correlations in data (sampling interval)
- noise
- filtering
- superposition of non-interacting dynamical systems
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number of data points

- requirement: lim N  
- field applications: N always limited, stationarity issues, 

system life-time, observation time

- proposed estimators: N ~ 10D2 (Albano et al., 1987)
N ~ 42D2 (Smith, 1988)
N ~ 100D2 (Procaccia, 1989)

- N as large as possible; resolvability of attractor structure depends
on density of phase space points
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number of data points determines maximum resolvable dimension
(Ruelle criterion)

from: D. Ruelle. The Claude Bernard Lecture, 1989 - Deterministic chaos: the science and the fiction. Proc. R. Soc. Lond. A 427, 241-248 (1990)



dimension from time series: what can go wrong?

Fundamentals of Analyzing Biomedical Signals Dimensions

Generalized dimensions Rényi dimensions

47
from: D. Ruelle. The Claude Bernard Lecture, 1989 - Deterministic chaos: the science and the fiction. Proc. R. Soc. Lond. A 427, 241-248 (1990)
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data precision

- field applications: analog-digital converter (ADC with n bits)
- digitizing accuracy: p = A/2n, A = amplitude range
- quantization error: q = p/2

from: M. Möller, et al. Errors from digitizing and noise in estimating attractor dimensions. Phys. Lett. A, 138(4-5), 176–182, 1989
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data precision

possible way to minimize influence of the quantization error: 
add noise prior to digitizing 
(pre-whitening, dithering, bleaching)

effectiveness depends on system under study 
not effective for broad-band signals 

caveat: adding noise can lead to erroneous dimension estimates

from: M. Möller, et al. Errors from digitizing and noise in estimating attractor dimensions. Phys. Lett. A, 138(4-5), 176–182, 1989
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strong correlations in data

field applications 
- sampling rate according to Nyquist-Shannon theorem:

at least twice as high as signal’s maximum frequency fmax

to avoid aliasing

- how to treat cases with unknown fmax? 
- how to treat a chaotic signal?
- is resampling (over-/undersampling) a good choice?
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strong correlations in data

problem: for a sufficiently fine temporal resolution, points close in time 
are also close in phase space

correlation sum overestimated

Theiler correction: 
exclude temporally close points from the correlation sum:

(adjust normalization accordingly)
J. Theiler, Phys. Rev. A, 34(3):2427-2432 1986
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strong correlations in data

how to choose cutoff W for Theiler correction?

minimum requirement: W in the order of autocorrelation time ()

better: 

(exact choice is then insignificant)

J. Theiler, Phys. Rev. A, 34(3):2427-2432 1986
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strong correlations in data (ex.: Lorenz system without correction)

from: G. Ansmann

D2
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strong correlations in data (ex.: Lorenz system with correction)

from: G. Ansmann

D2
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noise

field applications:
- data always noisy (characteristics of noise?)
- measurement errors (white noise approximation)
- additive vs. multiplicative noise
- if number of data points limited, dimension of white noise finite!
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example: white noise; N = 8192

D2

embedding dimension m
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example: low-pass-filtered noise; N = 8192, Theiler correction

D2

embedding dimension m

white 
noise

filtered 
noise

Rapp et al., Filtered noise can mimic low-dimensional chaotic attractors. Phys. Rev. E, 47, 2289 (1993)

D2 ~ m
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example: low-pass-filtered noise; N = 8192, Theiler correction

embedding dimension m

white 
noise

filtered 
noise
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noise

classical filtering of noise induces structure in phase space
spatial (long-ranged) correlations

Theiler correction only minimized short-ranged correlations


- do not use classical filter for chaotic signals !
- apply other methods to discriminate determinism from stochasticity
- use other nonlinear noise reduction schemes (future lectures)
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filtering

field applications:
- sampling theorem, avoid aliasing
- noise reduction (see above!)

- chaotic signals typically broad-band (see Linear Methods)
- do not filter chaotic signals !
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example: filtered Hénon map

Badii et al., Phys. Rev. Lett.  60, 979, 1988; Mitschke et al., Phys Rev A 37, 4518, 1988)

recursive realization of single-
pole low-pass filter (1. order)
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example: filtered Hénon map

dimension increase (+1)

interpretation:
- superposition of two systems
(Hénon system + filter)

- filter (passive, linear)
one-dimensional system

filtering does not affect other
invariant measures

Badii et al., Phys. Rev. Lett.  60, 979, 1988; Mitschke et al., Phys. Rev. A 37, 4518, 1988
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Generalized dimensions Rényi dimensions

- Consider two non-interaction dynamical systems A and B. 
For the product dynamical system AxB, we have 

dim(AxB) ≤ dim(A) + dim(B).

- Consider time series of system observables v(A), resp. v(B) that  
solely depend on A, resp. B, and a time series v(AxB) of the    
product dynamical system with 

v(AxB) =  v(A) +  v(B)

- Consider cases  = ,  < , and  > 

product dynamical system

Hurewicz and Wallmann (1948): Dimension Theory
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product dynamical system
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product dynamical system

sine wave (A) + Hénon map (B)

 =  = 1  = 0.1;  = 1  = 1;  = 0.1
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 =  = 1
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 = 0.1;  = 1
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 = 1;  = 0.1
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product dynamical system

sine wave (A) + Hénon map (B)

 =  = 1  = 0.1;  = 1  = 1;  = 0.1

D2

dimension from time series: what can go wrong?



dimension from time series: Summary

Estimate dimension of time series via slope of correlation sum

– check multiple embedding dimensions 

– select scaling region properly

– apply Theiler correction

– be aware of influencing factors, limitations, and pitfalls

D : chaotic dynamics

D : hint at regular dynamics

D = ∞ : noise
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Generalized dimensions Rényi dimensions
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