Fundamentals of Analyzing Biomedical Signals

1

Entropies

Order / Disorder

from Time Series

Any method involving the notion of **entropy**, the very existence of which depends on the second law of thermodynamics, will doubtless seem to many far-fetched, and may repel beginners as obscure and difficult of comprehension.

Willard Gibbs Graphical Methods in the Thermodynamics of Fluids (1906) Fundamentals of Analyzing Biomedical Signals

Entropies

fundamental concept

in thermodynamics and statistical mechanics (1850s – 1880s)

entropy \rightarrow expression of the disorder, or randomness of a system

- macroscopically:

$$S = k_B \ln \Omega \quad [J/K]$$

 Ω denotes number of microstates
 $k_B \approx 1.38 \cdot 10^{-23} \quad [J/K]$

- microscopically: $S = -k_B \sum_i p_i \ln p_i$ $p_i = \frac{1}{\Omega} \text{ for microcanonical ensemble}$

phase transitions, entropy-driven order (Landau theory); adiabatic demagnetization; ...

Fundamentals of Analyzing Biomedical Signals

fundamental concept in information theory

(1940-1950)

Entropies

entropy \rightarrow amount of information needed to specify the full microstate of the system X (Shannon entropy)

$$S(X) = -\sum_{i} p(x_i) \ln p(x_i)$$

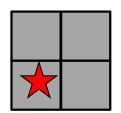
extensions and generalizations useful for time series analysis:

Rényi entropies \rightarrow diversity, uncertainty, or randomness of a system

Kolmogorov-Sinai entropies \rightarrow chaoticity of a system

observing a system (measurement) is source of information

system with 2 states has maximum information content: 1 bit



system with 4 states has maximum information content: 2 bits

system with M states has maximum information content: $I = \log_2 M$

measuring statistical events and average information gain

given a priori knowledge: M events (M system states) will appear (will be taken) with probabilities $\{p_i\}$, with $\sum_i p_i = 1$

measurement:

if you learn that event $j \ (j \in M)$ appeared (system state j has been taken) then you will gain "average information" (through many measurement repetitions) as

$$I = -\sum_{i} p_i \log_2 p_i$$

(denoted as Shannon information)

measuring statistical events and average information gain

example: coin flipping; head (p_1) or tail (p_2) ? equal probability for outcome: $p_1 = p_2 = 0.5$

Entropies

measurement \rightarrow head \rightarrow information gain I = 1

and with probabilities:

$$I = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = -(-0.5 - 0.5) = 1$$

linear methods for estimating entropies

recall: Fourier transform and Parseval's theorem (see Linear Methods) with normalized power spectrum

$$\hat{P} = \sum_{k=1}^{N} |\hat{v}_k|^2 \stackrel{!}{=} 1$$

we can estimate the entropy S of the relative spectral density as:

$$S = -\sum_{k=1}^{N} \hat{P}(k) \log_2 \hat{P}(k)$$

S characterizes homogeneity of power spectrum:

S is minimum for line spectra (single Fourier component) S is maximum for broad-band spectra (white noise) S for chaotic dynamics? (looks like white noise)

need other methods to characterize entropy of chaotic dynamics

Given:

- measured data follows some probability distribution
- transitions between successive data points occur with well-defined probabilities

Qs:

- if you have performed exactly one measurement, how much do you learn about the state of a system?
- if you have observed the entire past of a system, how much information do you have about future observations?

As:

can be found with generalized Rényi entropies

static distributions

generalized entropies order-*q* Rényi entropies

... characterize the amount of information needed to specify the value of an observable with a certain precision if only the probability density is known that observable has value \mathbf{x} .

Idea:

- partition phase space into M disjoint hypercubes (boxes) of side length ϵ (set of all these hypercubes is called a partition \mathcal{P}_{ϵ})
- estimate probability p_i to find state **x** in box j
- define order-q Rényi entropy for partition $\mathcal{P}_{\varepsilon}$ as:

$$\tilde{H}_q(\mathcal{P}_\epsilon) = \frac{1}{1-q} \ln \sum_{j=1}^{M(\epsilon)} p_j^q$$

static distributions

generalized entropies

order-q Rényi entropies

for q = 1, we derive (L'Hôpital's rule) the Shannon entropy:

$$\tilde{H}_1(\mathcal{P}_\epsilon) = -\sum_j p_j \ln p_j$$

which is the only Rényi entropy that is additive:

the Rényi entropy of a joint process is the sum of the entropies of the independent processes

(cf. mutual information)

example: Rényi entropy of a uniform distribution

given: probability density $\mu(x) = \begin{cases} 1 & \text{if } x \in [0, 1] \\ 0 & \text{else} \end{cases}$

partition the unit interval into N partitions of length $\epsilon = \frac{1}{N}$

we find:
$$\tilde{H}_q(\epsilon) = \frac{1}{1-q} \ln (N \epsilon^q) = -\ln \epsilon = \ln N$$

- all order-*q* entropies are the same (due to the homogeneity of the uniform distribution)
- the better you resolve the real numbers by the partition, the more information you gain

static distributions

generalized entropies and dimensions

relationship: order-q entropies and order-q dimensions

$$\tilde{H}_q(\mathcal{P}_\epsilon) = \frac{\ln \sum_{j=1}^{M(\epsilon)} p_j^q}{1-q} \qquad \qquad D_q := \lim_{\epsilon \to 0} \frac{\ln\left(\sum_{i=1}^{M(\epsilon)} p_i^q\right)}{(q-1)\ln(\epsilon)}$$

- disjoint vs. non-disjoint partitioning

dimensions are the scaling exponents of the Rényi entropies computed for equally-sized partitions as functions of ϵ and in the limit $\epsilon \to 0$.

Entropies

so far: entropies for static distributions

- can characterize attractor "as a whole"
- similar to dimension \rightarrow no further gain of information
- no information about dynamics on the attractor

idea:

- consider entropies for *transition probabilities*
- characterize flow of information from small to large scales (typical for chaotic systems)

Kolmogorov-Sinai entropy

- partition *m*-dimensional phase space into *M* disjoint hypercubes (boxes) of side length ε^m
- let $p_{i_1,...,i_m}$ denote the *joint probability* that state $\mathbf{X}(t=1)$ is in box i_1 , state $\mathbf{X}(t=2)$ is in box i_2 , etc., and that state $\mathbf{X}(mt)$ is in box i_m
- define *block-entropies* of block-size *m* as:

$$H_q(m, \mathcal{P}_{\epsilon}) = \frac{\ln \sum_{i_1, \dots, i_m}^{M(\epsilon)} p_{i_1, \dots, i_m}^q}{1-q}$$

Kolmogorov-Sinai entropy

for $m \rightarrow \infty$, block-entropies are related to order-q entropies as:

$$h_{q} = \sup_{\mathcal{P}} \lim_{m \to \infty} \frac{1}{m} H_{q}(m, \mathcal{P}_{\epsilon})$$

$$h_{q} = \lim_{m \to \infty} H_{q}(m+1, \mathcal{P}_{\epsilon}) - H_{q}(m, \mathcal{P}_{\epsilon})$$
with
$$h_{q}(n, \mathcal{P}_{\epsilon}) = H_{q}(n, \mathcal{P}_{\epsilon})$$

$$h_q(0, \mathcal{P}_{\epsilon}) := H_q(0, \mathcal{P}_{\epsilon})$$

the supremum indicates: maximize over all possible partitions \mathcal{P} , and implies the limit $\epsilon \to 0$

 h_0 is called *topological entropy* (also abbreviated with K_0) h_1 is called *Kolmogorov-Sinai entropy* (also abbreviated with K_1)

Kolmogorov-Sinai entropy

what do order-q entropies and order-q dimensions characterize?

topological entropy and Hausdorff dimension

- h_0 (or K_0) counts number of different orbits
- D_0 counts number of non-empty boxes

Kolmogorov-Sinai entropy and information dimension

- h_1 (or K_1) is a measure for the average rate of loss of information loss about a system state
- D_1 is a measure for a gain of information when findings a state in a given box

entropies provide important information on topology of folding processes, disorder, chaoticity, and predictability

estimating order-q entropies from data is hard, particularly for high-dimensional systems (require more data than dimensions or Lyapunov exponents)

taking the limit $m \rightarrow \infty$ is difficult

box-counting (evaluate *m*-dimensional histograms) is most direct approach but turned out to be impractical

alternative ansatz: *importance sampling*

correlation entropy

idea:

- instead of using uniformly distributed partitions of phase space center partitions (boxes with fixed ϵ) on phase-space vectors
- use correlation sum (see Dimensions) to derive correlation entropy K_2

with order-q correlation sum

$$C_q(\epsilon) := \frac{1}{N} \sum_i \left(\frac{1}{N} \sum_j \Theta\left(\epsilon - |\vec{v_i} - \vec{v_j}|\right) \right)^{q-1}$$

we find for q = 2 $C_2(\epsilon) \propto \text{const. } \epsilon^{D_2}$

in general, we have for q > 1

$$C_q(\epsilon) \propto \epsilon^{(q-1)D_q} \mathrm{e}^{(1-q)H_q(m)}$$

if the systems exhibits a scaling region, we have $\epsilon^{D_q} \approx \text{const.}$ we can then find correlation entropy from

$$h_q = \lim_{m \to \infty} H_q(m+1,\epsilon) - H_q(m,\epsilon)$$
$$= \lim_{m \to \infty} \ln\left(\frac{C(m,\epsilon)}{C(m+1,\epsilon)}\right) =: K_2$$

correlation entropy

Entropies

correlation entropy

entropies from time series

pros and cons of correlation entropy

- conceptually easy
- quickest to calculate

- requires existence of scaling region (independent on ε) (if you can't find a scaling region do not apply this method!) - needs lots of data

(you loose ε^{-h} neighbors when going from m to m+1)

\rightarrow

check robustness

constancy for a range of ε values and embedding dimensions m

Entropies

entropies from time series

example: Hénon map

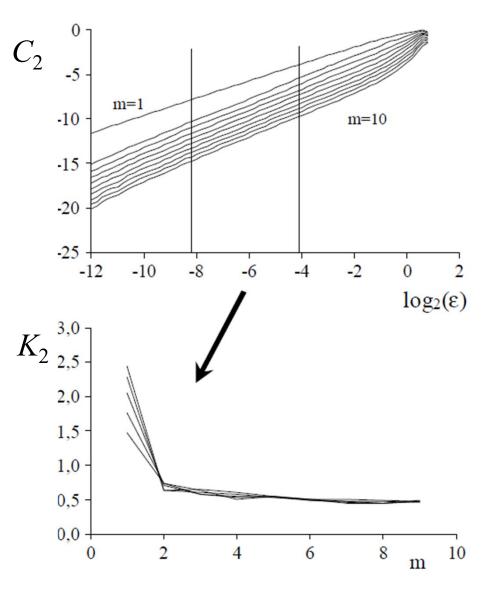
$$x_{n+1} = 1 - ax_n^2 + y_n$$

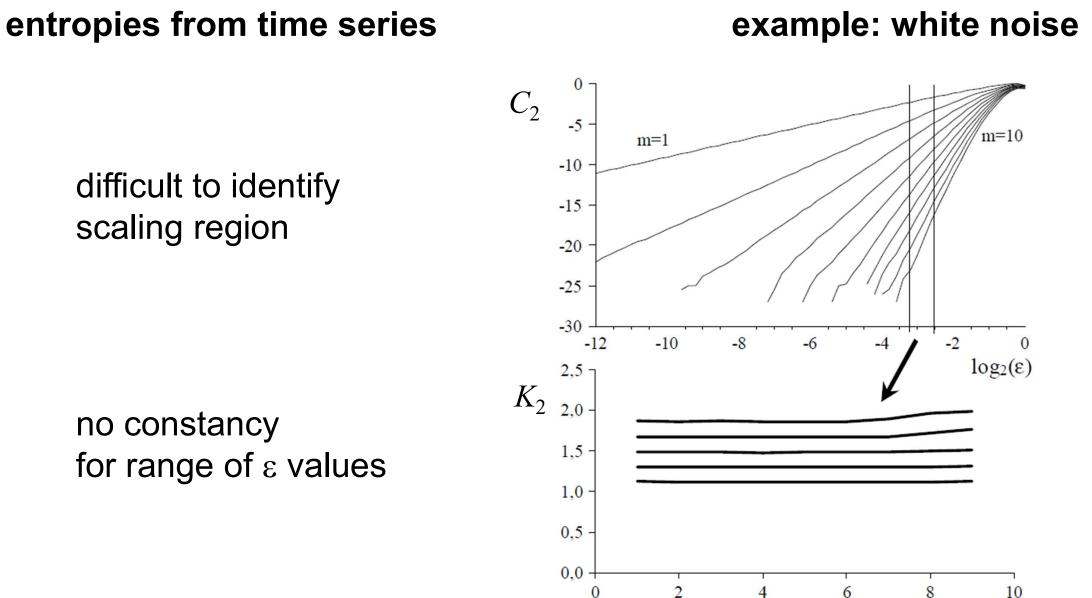
$$y_{n+1} = bx_n$$

where

$$a = 1.4; b = 0.3$$

literature $(m \rightarrow \infty)$: $K_2 \sim 0.33$



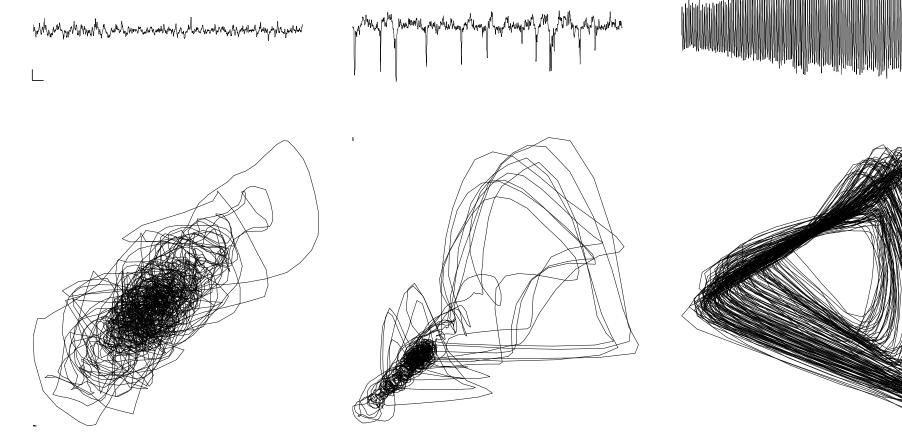


no constancy for range of ε values

m

Entropies

example: EEG data

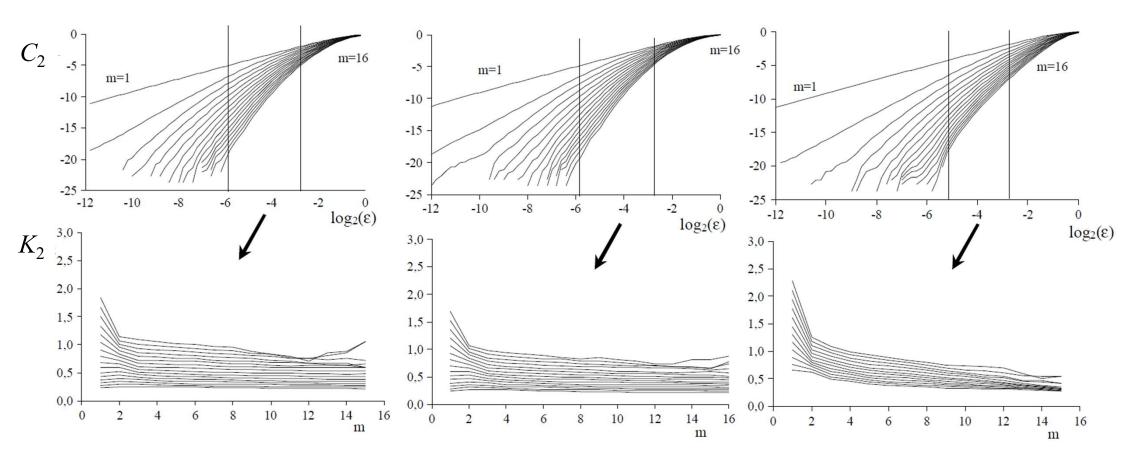


healthy subject

epilepsy patient seizure-free interval

epilepsy patient seizure

example: EEG data



entropies

what can go wrong?

field applications

- number of data points ($\lim N \to \infty$ and $m \to \infty$)
- data precision adopt to requirement of small ϵ -neighborhood
- strong correlations in data (sampling interval) use Theiler correction (see Dimensions)
- noise, filtering

similar impact as with Dimensions and Lyapunov exponents

- identifiable scaling region

entropies

Interpretation

Entropies

- in general, we have: $K_{q'} \leq K_q$ for q' > q
- disorder, chaoticity of a system and type of the dynamics:

K > 0: chaos, unstable dynamics K = 0: regular dynamics $K = \infty$: noise

average rate of loss of information due to action of nonlinearity

prediction horizon:

$$T_{\rm p} \approx \frac{-\ln(\rho)}{K}$$

where:

 ρ denotes accuracy of measurement (initial state)

Pesin's identity

relationship between entropy and Lyapunov exponents

- entropy characterizes average rate of loss of information loss about a system state
- Lyapunov exponents characterize exponential divergence of initially close system states

Pesin's identity:

$$K_1 = \sum_{i,\lambda_i > 0} \lambda_i$$

Pesin's identity

relationship between entropy and Lyapunov exponents

consistency checks for time-series analysis

estimate K_1 from sum over all positive Lyapunov exponents

note that
$$K_1 = \sum_{i,\lambda_i > 0} \lambda_i$$

due to $K_{\mathbf{q}'} \leq K_{\mathbf{q}}$ for $\mathbf{q}' > \mathbf{q}$

we have $K_2 = \sum_{i,\lambda_i > 0} \lambda_i$

compare with K_2 estimate from correlation sum