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Brief Recap: Dynamical Invariants and System Properties

propertiesinvariants

dimensions
scaling behavior, self-similarity,
number of degrees of freedom, complexity,
nonlinearity (from fractality), determinism

Lyapunov
exponents

stability (short- and long-term),
predictability, determinism,
nonlinearity, chaos

entropies
(dis-)order, complexity,
predictability, determinism,
nonlinearity, chaos
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Brief Recap: Dynamical Invariants and Type of Dynamics

dynamics properties invariants

regular
deterministic
long-term predictability
strong causality

chaotic

deterministic
limited predictability
violation of strong causality
nonlinearity

stochastic
randomness
no predictability
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Brief Recap: Dynamical Invariants and Real-World Data

When analyzing time series from real-world systems

- many prerequisites can not strictly be fulfilled

- limited significance of dynamical invariants

- cannot strictly proof chaos, nonlinearity, deterministic structure 

→ need other methods to 
- test for determinism
- test for nonlinearity
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determinism / stochasticity Wold decomposition

H. O. Wold. The analysis of stationary time series. Almqvist & Wiksell, Uppsala, 1954

“every weak stationary time series v(t) can be written as the 
sum of two time series: 
a linearly deterministic d(t) and a stochastic (t)”  

recap weak stationarity (see Linear Methods):
mean, variance, and covariance do not depend on time:
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Brief Intermezzo testing for weak stationarity

given time series
split it into contiguous segments of given length

estimate for each segment
- scalar statistics: mean, variance (std. dev.) 
- more elaborate statistics: cross-forecast error 
(phase-space-based one-step-ahead predictor*)

problem: what is an appropriate segment length?
- need to find a tradeoff between good statistics (large N) and hints
for weak stationarity

*T. Schreiber, Detecting and analysing nonstationarity in a time series using nonlinear cross predictions, Phys. Rev. Lett. 78, 843´, 1997
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Brief Intermezzo testing for weak stationarity
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Brief Intermezzo testing for weak stationarity
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Brief Intermezzo testing for weak stationarity
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determinism / stochasticity Wold decomposition

decomposition theorem 

- assumes linearly deterministic component
- assumes additivity 
- allows for “binary” decision only (either deterministic or stochastic)

desirable: mapping onto some interval

time series
deterministic

stochastic

1.0

0.0

0.5
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determinism / stochasticity idea

with weak causality criterion (equal causes  equal effects), 
we have:

- motion in phase space is uniquely determined

- no self-crossing of trajectory 

- with smooth equations of motion, we find that close trajectory 
segments are parallel 

- in infinitesimal small volume elements, we find
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determinism / stochasticity idea

with strong causality criterion (similar causes  similar effects), 
we have:

- trajectory segments are aligned in small (but finite) volume elements

- this defines a local flow in phase space*

* for strange attractors with “empty” regions this holds “on average” (over the whole attractor)
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determinism from time series approaches

phase-space-based approaches to test for determinism in time series

vector field in phase-space

parallelism*
(Kaplan & Glass, Phys Rev Lett 68, 427, 1992)

continuity 
(Wayland et al, Phys Rev Lett 70, 580, 1993)

smoothness
(Salvino & Cawley, Phys Rev Lett 73, 1091, 1994)

statistics

determinism / stochasticity
* discussed here
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determinism from time series Kaplan-Glass approach

from: Kaplan & Glass, Phys Rev Lett 68, 427, 1992

observation:
the tangent to the trajectory generated by 
a deterministic system is a function of 
position in phase-space

determinism:
all tangents to the trajectory in a given region
of phase-space will have similar orientations
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determinism from time series Kaplan-Glass approach

- phase-space reconstruction
(delay-embedding; embedding parameter chosen appropriately)

- coarse-graining of phase-space (boxes with finite side length)

- kth pass of trajectory through box j
generates trajectory vector yk,j

- vector has unit length (normalized) 

- vector orientation determined by 
vector between entry and exit points
(mean direction; advantage: 
acts like low-pass filter)

yk,j

box j

m = 2
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determinism from time series Kaplan-Glass approach

- statistics over all trajectory vectors and boxes
nj passes of trajectory through box j
normalize all nj trajectory vectors (passes are treated equally)
vectorial summation and normalization by number of passes
(boxes are treated equally)
define mean trajectory vector as:

- characterize local flow in phase-space
consider global average over all boxes 
sort boxes according to the respective number of passes
evaluate distribution of mean trajectory vector lengths 
dependent on number of passes
define: 
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determinism from time series Kaplan-Glass approach

number of passes n

Lorenz system
white noise

L = 0.97

L = 0.23
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determinism from time series Kaplan-Glass approach

- reasons for deviations from expected values

upper bound: in general, we have
can’t take limit, need coarse graining 
if  too small  too few passes  insufficient statistics

lower bound: consider graph for white noise 
one can find:

due to n-step random walk in m dimensions*

RAYLEIGH, Lord. XXXI. On the problem of random vibrations, and of random flights in one, two, or three dimensions. The London, Edinburgh, and Dublin 
Philosophical Magazine and Journal of Science, 1919, 220, 321, 1919
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determinism from time series Kaplan-Glass approach

- renormalization:

Lorenz system
white noise

number of passes n

F* = 0.97

F*  0
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field applications

- number of data points (N large enough)

- appropriate embedding (dimension, delay)

- data precision 
adopt to requirement of coarse graining (number of boxes)

- strong correlations in data (sampling interval)
use Theiler correction (see Dimensions)

- noise, filtering
filtering can induce determinism
filtered noise resembles deterministic motion

determinism from time series what can go wrong?

Fundamentals of Analyzing Biomedical Signals Determinism
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determinism from time series what can go wrong?

Fundamentals of Analyzing Biomedical Signals Determinism

embedding dimension m

insufficient occupation density low-pass filtered noise
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N = 4096 data points, fixed embedding delay, 
fixed number of boxes/dimension
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determinism from time series what can go wrong?

Fundamentals of Analyzing Biomedical Signals Determinism

impact of system periodicity oscillatory systems

N = 4096 data points, fixed embedding dimension (m=6)
fixed number of boxes/dimension

minimum at integer multiples of system period length

Lorenz system
Rössler system

embedding delay 
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determinism from time series summary

- easy-to-handle tests for determinism from time series
(beware influencing factors) 

- useful supplement to “standard” nonlinear analysis techniques

- all methods test for smoothness of local flow in phase-space 
(--approach)

- equivalence “smoothness  determinism” justified?

- exclusion criterion:
a stochastic dynamics must yield clearly different findings


