Fundamentals of Analyzing Biomedical Signals

Interactions

Measuring Interactions

from Time Series

Information-theory-based techniques

information-theory

basic idea: interaction \Leftrightarrow information flow

- the "stronger" the information flow, the stronger the interaction
- information flow from one system to another indexes directionality

characterize information with Shannon entropy $H = -\sum_i p_i \log p_i$

p is the (normalized) probability for an event / state / amplitude /... to occur

estimate probability with $p_i = \lim_{N \to \infty} \frac{N_i}{N}$ where *N* is the total number of events / states / amplitudes /...

measuring interactions strength of interaction:

information-theory mutual information

given systems X and Y, the mutual information is defined as:

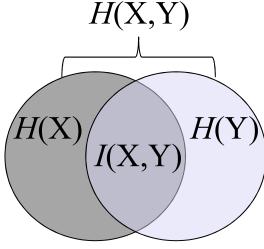
$$I(\mathbf{X}, \mathbf{Y}) = H(\mathbf{X}) + H(\mathbf{Y}) - H(\mathbf{X}, \mathbf{Y})$$

information generated by system X is characterized by the Shannon entropy:

$$H(\mathbf{X}) = -\sum_{i}^{N} p_{\mathbf{X}}(i) \log p_{\mathbf{X}}(i)$$

joint information is characterized by the Shannon entropy:

$$H(\mathbf{X}, \mathbf{Y}) = -\sum_{i,j}^{N} p_{\mathbf{X},\mathbf{Y}}(i,j) \log p_{\mathbf{X},\mathbf{Y}}(i,j)$$



measuring interactions strength of interaction:

information-theory relative entropy

relative entropy (also known as Kullback-Leibler divergence):

 $H_{\rm rel}(\mathbf{X}|\mathbf{Y}) = -\sum_{i}^{N} p_{\mathbf{X}}(i) \log \frac{p_{\mathbf{X}}(i)}{p_{\mathbf{Y}}(i)}$

- characterizes the similarity between the probability distributions.
- relative entropy is asymmetric: $H_{rel}(X|Y) \neq H_{rel}(Y|X)$
- in general $H_{\rm rel}$ is positive, and zero for identical systems

 \rightarrow alternative definition of mutual information:

$$I_{\rm rel}(\mathbf{X}|\mathbf{Y}) = -\sum_{i,j}^{N} p_{\mathbf{X},\mathbf{Y}}(i,j) \log \frac{p_{\mathbf{X},\mathbf{Y}}(i,j)}{p_{\mathbf{X}}(i)p_{\mathbf{Y}}(j)}$$

characterizes *relative* difference between respective probability density distributions and the joint distribution density

S. Kullback, R.A. Leibler. On information and sufficiency. Ann. Math. Stat. 22, 79, 1951.

measuring interactions strength of interaction:

information-theory mutual information

properties of mutual information:

- symmetric: I(X, Y) = I(Y, X)
- I(X, Y) = 0 for independent (non-interacting) systems
- I(X, Y) = max for identical (fully synchronized) systems
- I(X, Y) increases monotonically with increasing coupling strength \rightarrow data-driven estimator for strength of interaction

disadvantages:

- only considers (single/joint) probability density distributions
- no information about dynamics
- can not explicitly distinguish between information exchange and joint information (e.g. due to common input or joint past)

6

information-theory

mutual information

measuring interactions strength of interaction:

extensions:

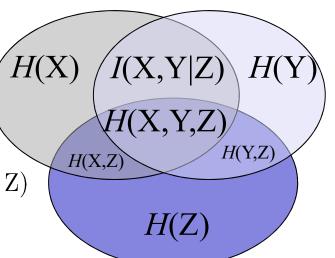
time-delayed mutual information (Kaneko, Physica D 23, 436, 1986)

partial (or conditional) mutual information

- (S. Frenzel & B. Pompe, PRL 99, 204101, 2007)
- part of mutual information of two random quantities that is not contained in a third one
- similar to partial correlation
- can also detect directionality*

I(X, Y|Z) = H(X, Z) + H(Y, Z) - H(Z) - H(X, Y, Z)

* K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka & J. Bhattacharya. Causality detection based on information-theoretic approaches in time series analysis. Physics Reports, 441, 1-46, 2007



measuring interactions *direction of interaction:*

information-theory transfer entropy

- aim: characterize flow of information between systems X and Y
 idea: replace (static) probability density distributions by transition
 probability densities (cf. Entropies)
- given: time series *v*: v_1 , v_2 , ..., v_N of some observable *x* and time series *w*: w_1 , w_2 , ..., w_N of some observable *y*
- 1) incorporate time-dependence by relating previous samples v_i and w_i to predict the next value v_{i+1} (cf. N. Wiener),

2) consider generalized Markov condition (p = transition probability density): $p(v_{i+1}|\mathbf{v}_i, \mathbf{w}_i) = p(v_{i+1}|\mathbf{v}_i)$

T. Schreiber, Measuring information transfer. Phys. Rev. Lett. 85, 461, 2000

measuring interactions *direction of interaction:*

information-theory transfer entropy

- 3) if systems X and Y independent \rightarrow Markov condition fulfilled
- 4) use relative entropy concept to quantify *incorrectness* of Markov condition; with this, transfer entropy is defined as:

$$T_{\mathrm{Y}\to\mathrm{X}} = \sum_{i}^{N} p\left(v_{i+1}, \mathbf{v}_{i}^{(k)}, \mathbf{w}_{i}^{(l)}\right) \log \frac{p\left(v_{i+1} | \mathbf{v}_{i}^{(k)}, \mathbf{w}_{i}^{(l)}\right)}{p\left(v_{i+1} | \mathbf{v}_{i}^{(k)}\right)}$$

(*l*,*k*) denote orders of Markov processes $T_{X \rightarrow Y}$ defined in complete analogy

information-theory

transfer entropy

measuring interactions *direction of interaction:*

properties of transfer entropy

- can detect direction of information flow since $T_{Y \to X} \neq T_{X \to Y}$
- unbounded, needs suitable definition of directionality, e.g.

$$T := T_{\mathbf{Y} \to \mathbf{X}} - T_{\mathbf{X} \to \mathbf{Y}} \begin{cases} > 0 : \ \mathbf{Y} \text{ drives } \mathbf{X} \\ = 0 : \text{ no or symmetric bidir. coupling} \\ < 0 : \ \mathbf{X} \text{ drives } \mathbf{Y} \end{cases}$$

- depends on coupling strength → data-driven estimator for direction of interaction
- for Gaussian distributed data, transfer entropy equals Granger causality
- similar to conditional mutual information (replace system Z by e.g., past of system Y)

Fundamentals of Analyzing Biomedical Signals

measuring interactions *direction of interaction:*

information-theory transfer entropy

Interactions

10

extensions:

- multivariate (partial) transfer entropy
- various estimation techniques
- estimators for transient signals* and delay-systems**

* H. Dickten, K. Lehnertz K. Identifying delayed directional couplings with symbolic transfer entropy. Phys Rev E 90, 062706, 2014 ** M. Martini, TA Kranz, T Wagner, K Lehnertz K. Inferring directional interactions from transient signals with symbolic transfer entropy. Phys Rev E 83, 011919, 2011

information-theory

measuring interactions strength and direction of interaction

how to estimate probability density distributions and the joint distribution densities from time series?

- counting (cumbersome)
- various binning techniques
- nearest neighbor estimators (e.g. Kozachenko-Leonenko)
- correlation sum (via phase-space embeddings)
- symbolization (e.g. based or permutation entropy*)

measuring interactions strength and direction of interaction

estimators based on the concept of symbolic dynamics and on symbolization

symbolic dynamics: modeling a smooth dynamical system by a *discrete space* consisting of infinite *sequences of symbols*, each of which corresponds to a state of the system, with the dynamics (evolution) given by the shift operator

symbolization: generate symbols via delay embedding

$$\mathbf{s}_i := (v_{i+(j_1-1)\tau}, v_{i+(j_2-1)\tau}, \dots, v_{i+(j_m-1)\tau})$$

where

$$v_{i+(j_1-1)\tau} \le v_{i+(j_2-1)\tau} \le \dots \le v_{i+(j_m-1)\tau}$$

 \rightarrow symbol $\hat{s}_i := (j_1, j_2, \dots, j_m)$

* C. Bandt, B. Pompe. Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett., 88, 174102, 2002

an example

information-theory

strength and direction of interaction

embedded data:
$$(3, 5, 9)$$
 $(10, 1, 6)$
symbols \Rightarrow $(1, 2, 3)$ $(1, 3, 2)$

permutation entropy:
$$H(m) = -\sum_{i=1}^{m!} \hat{s}_i \log \hat{s}_i$$

normalization: $0 \le H = \frac{H(m)}{\log(m!)} \le 1$

 $H \rightarrow 0$ for deterministic systems, $H \rightarrow 1$ for stochastic systems

Interactions

an example

information-theory

strength and direction of interaction

information-theory

an example

given time series of systems X and Y:

- estimate permutation entropy from windowed data
- investigate changing tendency of permutation entropies

$$S(w_i) = \begin{cases} +1 : \text{ if } H(w_i) < H(w_{i+1}) \\ -1 : \text{ else} \end{cases}$$

- characterize in-step behavior of pairs of permutation entropies

$$\gamma := \sum_{i=1}^{N_w} S_{\mathbf{X}}(w_i) S_{\mathbf{Y}}(w_i)$$

- $\gamma = 0$ for independent systems; $\gamma \rightarrow 1$ for synchronized systems; γ increase monotonically with increasing coupling strength \rightarrow data-driven estimator for strength of interaction

an example

information-theory

 $(\land (k) \land (l))$

measuring interactions

strength and direction of interaction

given time series of systems X and Y:

- for estimating probability density distributions and the joint distribution densities:

replace probabilities of data with probabilities of symbols count symbols (\rightarrow very fast)

- symbolic transfer entropy:

$$T_{\mathrm{Y}\to\mathrm{X}}^{\mathrm{S}} = \sum_{\hat{v}_{i+1}, \hat{\mathbf{v}}_{i}^{(k)}, \hat{\mathbf{w}}_{i}^{(l)}} p\left(\hat{v}_{i+1}, \hat{\mathbf{v}}_{i}^{(k)}, \hat{\mathbf{w}}_{i}^{(l)}\right) \log \frac{p\left(v_{i+1} | \mathbf{v}_{i}^{(\gamma)}, \mathbf{w}_{i}^{(\gamma)}\right)}{p\left(\hat{v}_{i+1} | \hat{\mathbf{v}}_{i}^{(k)}\right)}$$

- see properties of transfer entropy

- easy-to-use data driven estimator for direction of interaction

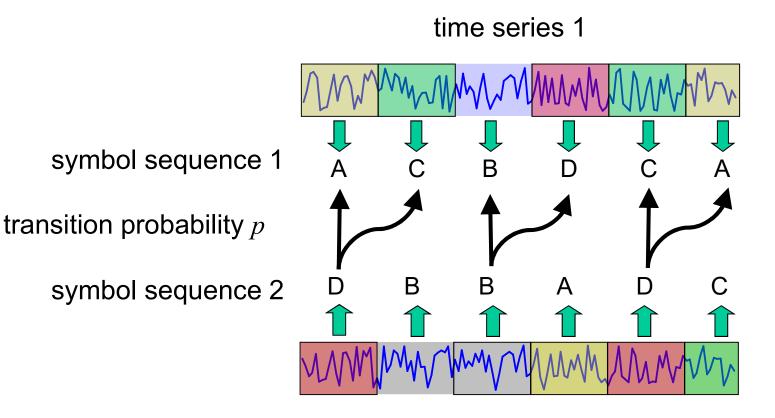
M. Staniek, K. Lehnertz. Symbolic Transfer Entropy. Phys. Rev. Lett. 100, 158101, 2008

16

Fundamentals of Analyzing Biomedical Signals

measuring interactions

strength and direction of interaction

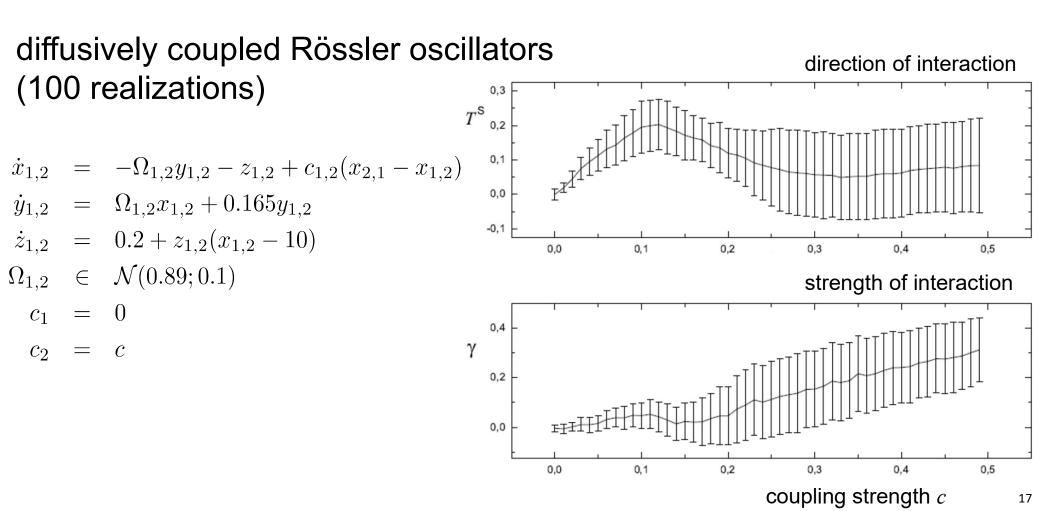


time series 2

information-theory

an example

Interactions



Interactions

an example

information-theory

strength and direction of interaction

Fundamentals of Analyzing Biomedical Signals

measuring interactions

an example

measuring interactions strength and direction of interaction

information-theory

diffusively coupled Rössler-Lorenz oscillators (100 realizations of driver-responder system) direction of interaction $\dot{x}^{\mathrm{R}} = -\Omega^{\mathrm{R}}(y^{\mathrm{R}} - z^{\mathrm{R}})$ 0.8 T^{S} $\dot{y}^{\mathrm{R}} = \Omega^{\mathrm{R}}(x^{\mathrm{R}} + 0.2y^{\mathrm{R}})$ 0.6 $\dot{z}^{\mathrm{R}} = \Omega^{\mathrm{R}} \left(0.2 + z^{\mathrm{R}} (x^{\mathrm{R}} - 5.7) \right)$ 0,4 0,2 0.0 $\dot{x}^{L} = 10(y^{L} - x^{L})$ 2 3 strength of interaction $\dot{y}^{\mathrm{L}} = \Omega^{\mathrm{L}} x^{\mathrm{L}} - y^{\mathrm{L}} - x^{\mathrm{L}} z^{\mathrm{L}} + c(y^{\mathrm{R}})^{2}$ 0.4 $\dot{z}^{\mathrm{L}} = x^{\mathrm{L}}y^{\mathrm{L}} - \frac{8}{2}z^{\mathrm{L}}$ γ

0.2

0.0

0

2

3

coupling strength *c*

 $\begin{array}{rccc} \Omega^{\mathrm{R}} & \in & \mathcal{N}(6,0.1) \\ \Omega^{\mathrm{L}} & \in & \mathcal{N}(28,1) \end{array}$

M. Staniek, K. Lehnertz. Symbolic Transfer Entropy. Phys. Rev. Lett. 100, 158101, 2008

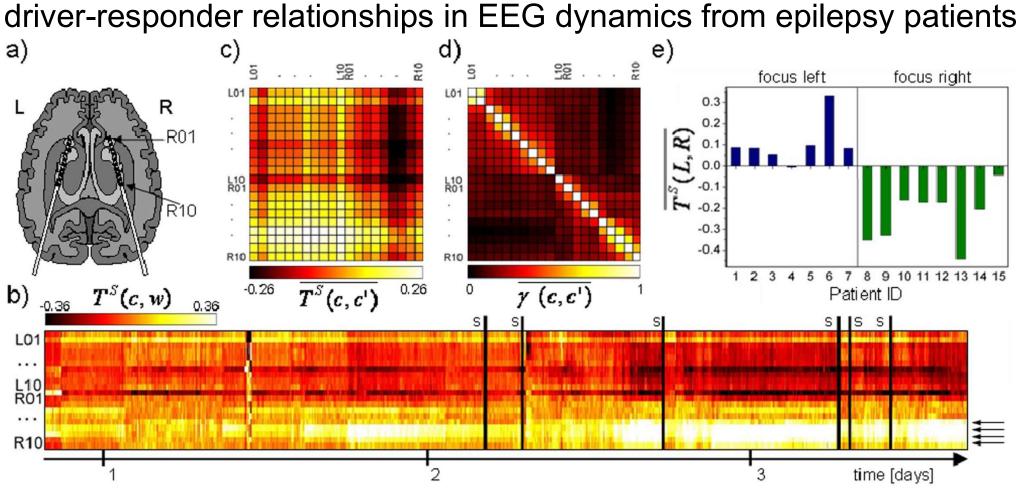
18

5

information-theory

strength and direction of interaction

an example



M. Staniek, K. Lehnertz. Symbolic Transfer Entropy. Phys. Rev. Lett. 100, 158101, 2008

information-theory

strength and direction of interaction

permutation-entropy-based estimators

advantages

- easy-to-use, fast-to-calculate
- high robustness against noise (symbolization)

disadvantages

- symbolization may lead to loss of information
- require appropriate choice of embedding parameter
- choice of window-size, finiteness of available symbols
- "faster" system (eigen-frequency, noise) → driver (need reliable surrogate test for directionality)
- may be fooled by (unobserved) third system