Measuring Interactions from Time Series

phase-based techniques

phase

basic idea: interaction ⇔ phase dynamics ⇔ synchronization

- the "stronger" the interaction, the more similar are the phases
- interaction-induced perturbation of phases indexes directionality

neglect amplitude information

phase ⇔ nonlinearity → interesting for chaotic systems

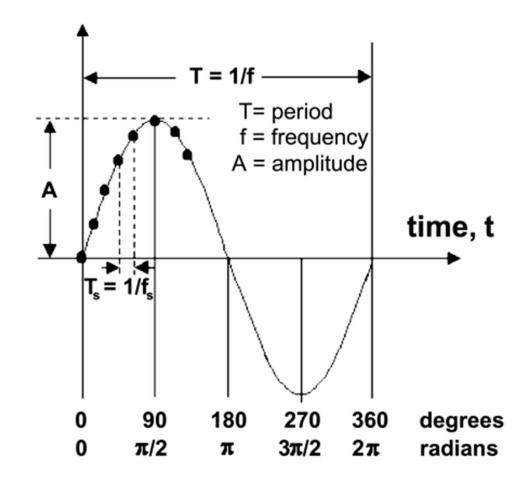
need to derive phase from time series

phase

the phase of a periodic function of some real variable t is the relative value of that variable within the span of each full period

phase is typically expressed as an angle $\phi(t)$

$$\phi(t) \in [0^{\circ}, 360^{\circ}) \text{ or } \phi(t) \in [0, 2\pi)$$



from: en.wikipedia.org

phase

phase synchronization

classical definition ("phase locking")

"adjustment of rhythms of oscillating objects due to a weak interaction"

$$n\phi_1(t) - m\phi_2(t) = \text{const}; \ (n, m) \in \mathbb{N}$$

extension for noisy and chaotic systems ("weak phase locking"):

"induction of relationships between the functionals of two processes due to an interaction"

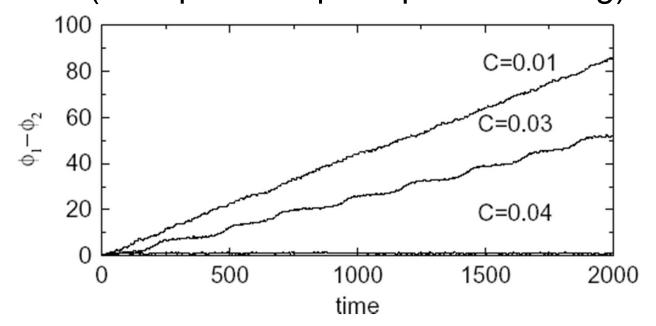
$$n\phi_1(t) - m\phi_2(t) < \text{const}; \ (n, m) \in \mathbb{N}$$

phase

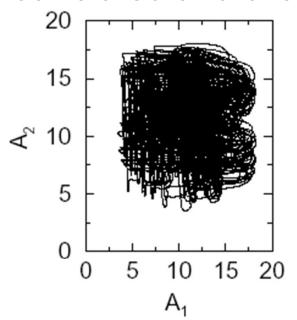
phase synchronization of chaotic oscillators

example: non-identical uni-directionally coupled Rössler oscillators (C = coupling strength)

adjustment of phases (from phase-slips to phase-locking)



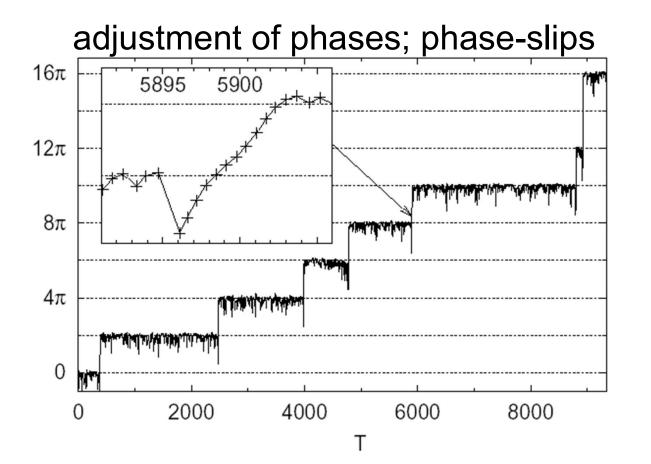
amplitudes remain uncorrelated and chaotic



phase

phase synchronization of chaotic oscillators

example: non-identical uni-directionally coupled Rössler oscillators (C = coupling strength)



devil's staircase

deriving phases from time series

given: time series v of some observable x and time series w of some observable y

and

given some reference time point (e.g. $t_0 = 0$) (holds for strictly periodic functions, triggered data, impulse responses, transfer functions)

\rightarrow define phase relative to t_0

let
$$v(t) = A(t)\cos(\phi(t_0 + t))$$
 (analogously for $w(t)$) with $z(t) = A(t)\exp(i\phi(t_0 + t))$, we have:

$$v(t) = \Re(z(t))$$

$$\phi(t) = \arctan\left(\frac{\Re(z(t))}{\Im(z(t))}\right)$$

$$A(t) = \sqrt{(\Re(z(t))^2 + (\Im(z(t))^2)}$$

derive imaginary part with e.g. Fourier transform

deriving phases from time series

given: time series v of some observable x and time series w of some observable y

if no reference time point given (arbitrary real-valued signals)

→ define phase using

- zero-crossings (or other marker-events; Rice, 1944)
- Hilbert-transform (Gabor, 1946; Panter 1965)
- (- wavelet-transform (Lachaux et al., 1999)*)

measuring interactions deriving phases from time series phases from zero-crossings

ansatz: successive zero-crossings correspond to completion of a period

- subtract mean value (demeaning) if necessary
- let t_k denote beginning of a period and t_{k+1} the next (e.g. via: $v^- \to 0$ or $v^+ \to 0$)
- derive phase with linear interpolation:

$$\phi(t) := \frac{t - t_k}{t_{k+1} - t_k} 2\pi + k2\pi; \text{ where } t_k \le t < t_{k+1}$$

measuring interactions phases from zero-crossings

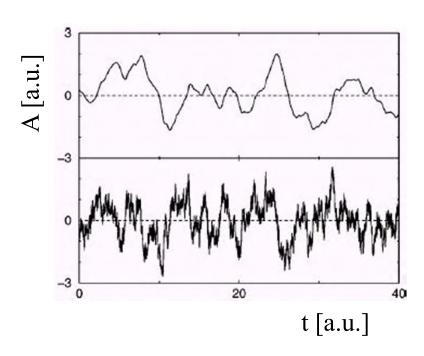
deriving phases from time series

pros:

easy fast computation

cons:

requires some periodicity requires smooth signals extremely sensitive to noise



from: Callenbach et al., PRE 65, 051110, 2002

ansatz: define *instantaneous* phase $\phi(t)$ using the analytic signal:

$$z(t) = v(i) + i\tilde{v}(t)$$

Hilbert-transform $\mathcal{H}\mathcal{T}$ is defined as:

$$\mathcal{HT}(v(t)) = \tilde{v}(t) := v(t) * \frac{1}{\pi t} = \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{+\infty} \frac{v(\tau)}{t - \tau} d\tau$$

p.v. = Cauchy principal value

representation in frequency domain: (use Fourier transform $\mathcal{F}\mathcal{T}$ and convolution theorem)

with
$$\mathcal{FT}(\frac{1}{\pi t}) = -i\operatorname{sign}(\omega) = \begin{cases} +i: & \text{if } \omega < 0 \\ 0: & \text{if } \omega = 0 \\ -i: & \text{if } \omega > 0 \end{cases}$$

we have: $\tilde{v}(t) = \mathcal{F}\mathcal{T}^{-1} \left[\mathcal{F}\mathcal{T}(v(t)) \left(-i \right) \operatorname{sign}(\omega) \right]$

and:

$$\phi(t) = \arctan rac{ ilde{v}(t)}{v(t)}$$
 instantaneous phase (possibly phase unfolding required) $\omega(t) = \dot{\phi}(t)$ instantaneous frequency

spectral power remains unchanged; phases of Fourier spectrum shifted by $\pi/2$

basic example: strongly periodic oscillation

given
$$v(t) = A \cos(\omega t)$$
; with $(A, \omega) = \text{const}$

$$\mathcal{HT}(v(t)) := \tilde{v}(t) = -A\sin(\omega t)$$

$$\Rightarrow \phi(t) = \arctan\left(-\frac{\sin \omega t}{\cos \omega t}\right) = -\omega t$$

sign: historical reasons

measuring interactions phases from Hilbert-transform

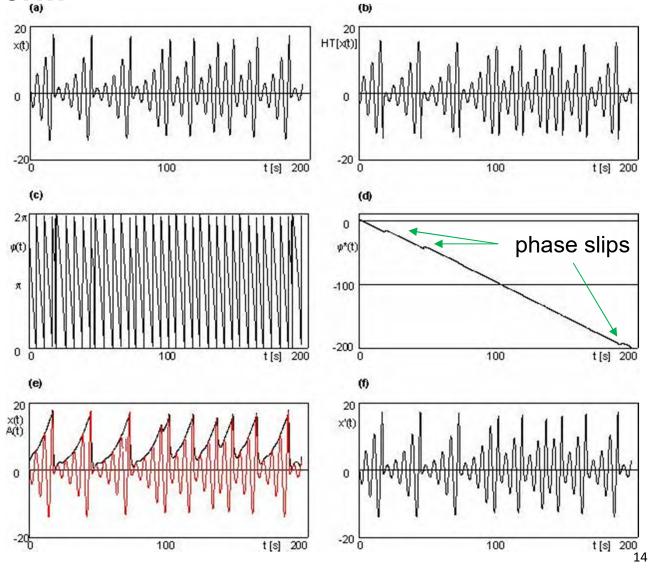
example: *x*-component of Rössler oscillator

$$\dot{x} = -0.89y - z$$

$$\dot{y} = x + 0.165y$$

$$\dot{z} = 0.2 + z(x - 10)$$

deriving phases from time series



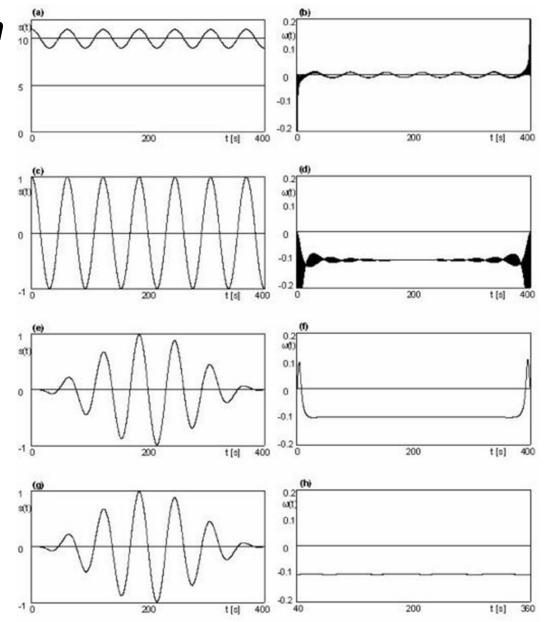
time series analysis: how to

- some periodicity required
- duration of signal: sampling theorem; about 20 data points/period;
 stationarity (at least approximate)
- offsets not taken into account, needs demeaning (subtract mean)
- if you use FFT on finite time series:
 requires trimming/tapering
 tapering can lead to distortions
- unfolding of phases required
- computational speed: $O(N \log(N))$

measuring interactions phases from Hilbert-transform

time series analysis: how to

deriving phases from time series



strength of interaction

- given phase time series from time series *v* and *w*
- phase synchronization if phase difference time series bounded:

$$\Delta \phi_{\rm vw}(t) := n\phi_{\rm v}(t) - m\phi_{\rm w}(t) \le {\rm const}; \ \forall t$$

- if phases derived from Hilbert transform: any (n, m)
- if phases derived from zero-crossings: n = m = 1
- need to test boundedness

strength of interaction

statistical ansatz: mean phase coherence*

- phase differences limited to $(0,2\pi]$ (due to arcus tangens)
 - → natural circularity → circular statistics**
- estimate moments of "circular distributions" by transforming the phase differences onto unit circle in complex plane

$$\Delta\phi_{\text{vw}}(t) = n\phi_{\text{v}}(t) - m\phi_{\text{w}}(t) \le \text{const}$$

$$z(t) = \cos(\Delta\phi_{\text{vw}}(t)) + i\sin(\Delta\phi_{\text{vw}}(t)) = \exp i(\Delta\phi_{\text{vw}}(t))$$

$$Z = \frac{1}{T} \sum_{t=1}^{T} z(t)$$

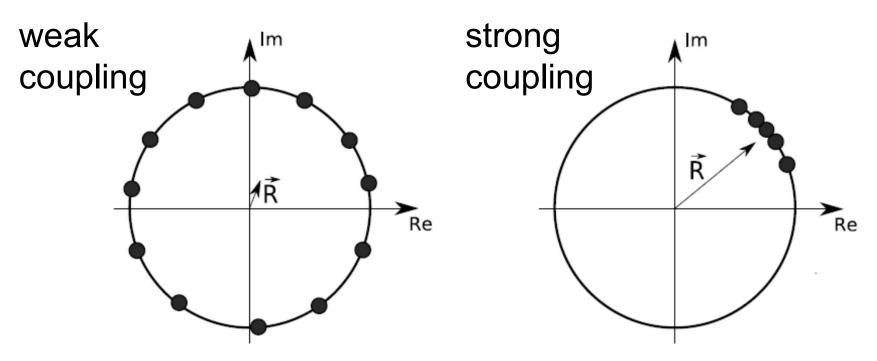
$$R := |Z| = \sqrt{(\Re Z)^2 + (\Im Z)^2}$$

^{*}M Hoke, K Lehnertz, C Pantev, B Lütkenhöner. Spatiotemporal aspects of synergetic processes in the auditory cortex as revealed by magnetoencephalogram, in: E. Basar, T.H. Bullock (Eds.), Series in Brain Dynamics, Vol. 2, Springer, Berlin, 1989. F Mormann, K Lehnertz, P David, CE Elger. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D, 144, 358, 2000

^{**} e.g. KV Mardia, P Jupp. Directional Statistics, John Wiley and Sons Ltd., 2000

strength of interaction

statistical ansatz: *mean phase coherence*



$$R \in [0,1]$$

R=1 complete phase synchronization (full phase locking)

R = 0 no phase synchronization

S = 1 - R (circular variance)

statistical ansatz: mean phase coherence

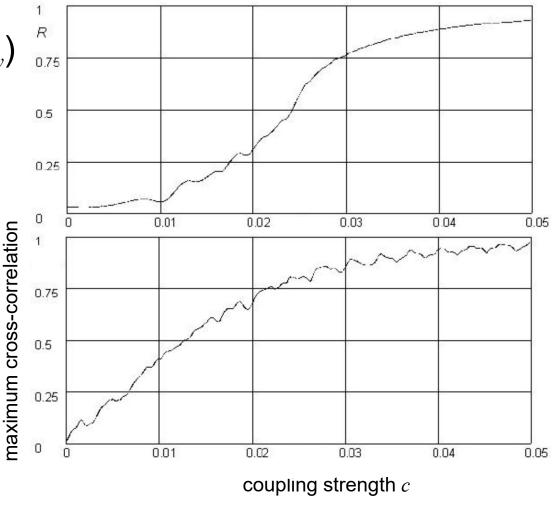
diffusively coupled oscillators (with eigen-frequencies Ω_v and Ω_w)

$$\ddot{\mathbf{v}} = -\Omega_v \mathbf{v} + c(\mathbf{w} - \mathbf{v})$$

$$\ddot{\mathbf{w}} = -\Omega_w \mathbf{w} + c(\mathbf{v} - \mathbf{w})$$

single realization

strength of interaction examples



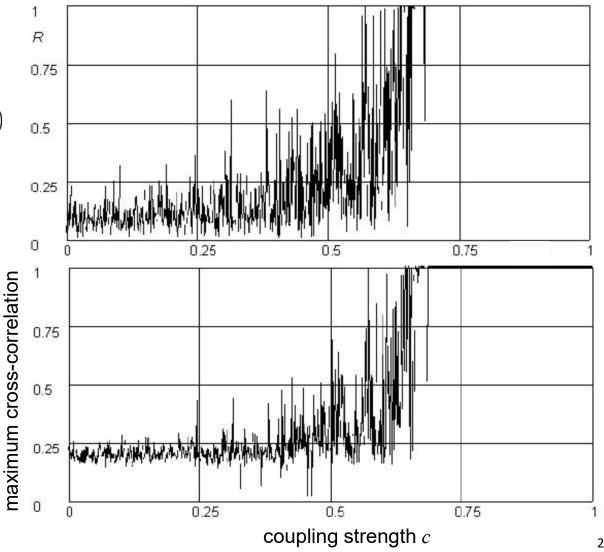
statistical ansatz: mean phase coherence

diffusively coupled Lorenz oscillators

$$\dot{x}_{1,2} = -\frac{8}{3}x_{1,2} + y_{1,2}z_{1,2} + c(x_{2,1} - x_{1,2})
\dot{y}_{1,2} = R_{1,2}z_{1,2} - y_{1,2} - x_{1,2}z_{1,2}
\dot{z}_{1,2} = 10(y_{1,2} - z_{1,2})
R_1 = 28; R_2 = 28.00001$$

single realization

strength of interaction examples

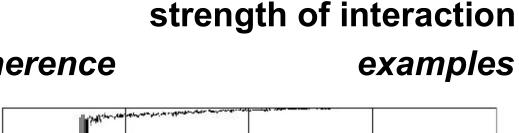


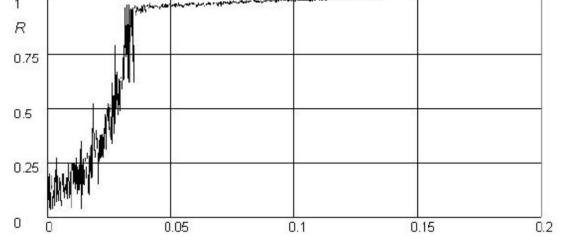
statistical ansatz: mean phase coherence

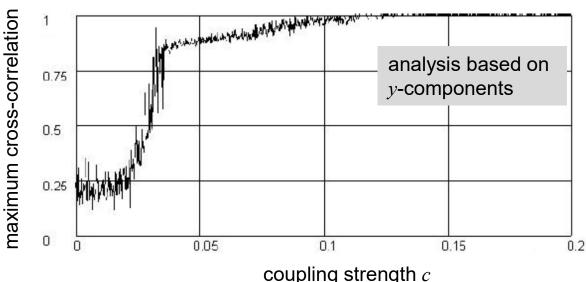
diffusively coupled Rössler oscillators

$$\dot{x}_{1,2} = -\Omega_{1,2}y_{1,2} - z_{1,2} + c(x_{2,1} - x_{1,2})
\dot{y}_{1,2} = \Omega_{1,2}x_{1,2} + 0.165y_{1,2}
\dot{z}_{1,2} = 0.2 + z_{1,2}(x_{1,2} - 10)
\Omega_{1} = 0.89; \Omega_{2} = 0.85$$

single realization







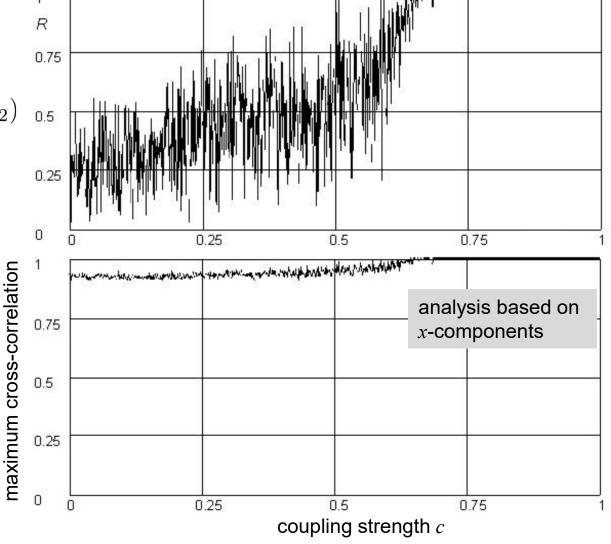
statistical ansatz: mean phase coherence

diffusively coupled Lorenz oscillators

$$\dot{x}_{1,2} = -\frac{8}{3}x_{1,2} + y_{1,2}z_{1,2} + c(x_{2,1} - x_{1,2})
\dot{y}_{1,2} = R_{1,2}z_{1,2} - y_{1,2} - x_{1,2}z_{1,2}
\dot{z}_{1,2} = 10(y_{1,2} - z_{1,2})
R_1 = 28; R_2 = 28.00001$$

single realization

strength of interaction examples



examples

strength of interaction

measuring interactions

statistical ansatz: mean phase coherence

c = max

0.75

robustness against noise for diffusively coupled oscillators

no coupling vs. maximum coupling

single realization

white noise 0.5 0.25 c = 0.020 40 0.75 random walk 0.5 noise 0.25 c = 0.0

$$RSV = \frac{\sigma_{\text{noise}}}{\sigma_{\text{signal}}}$$

examples

strength of interaction

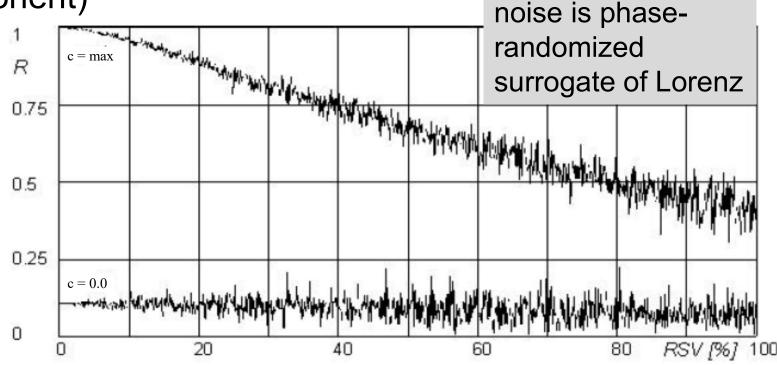
measuring interactions

statistical ansatz: mean phase coherence

robustness against noise for diffusively coupled Lorenz oscillators (*y*-component)

no coupling vs. maximum coupling

single realization



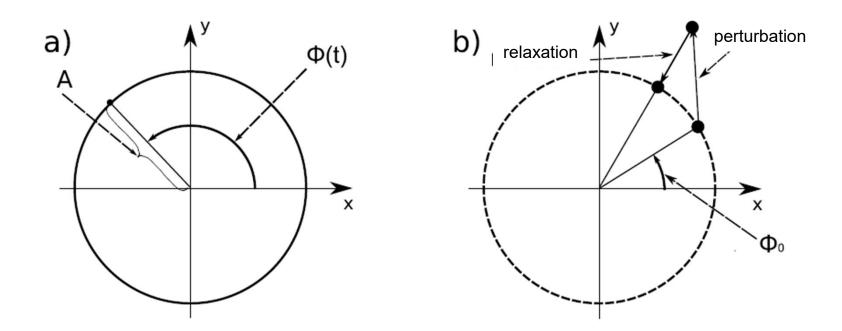
$$\mathrm{RSV} = rac{\sigma_{\mathrm{noise}}}{\sigma_{\mathrm{signal}}}$$

strength of interaction

- other approaches (based on information theory; Tass et al., 1998) index based on Shannon entropy index based on conditional probability
- different approaches yield similar findings (application dependent)
- mean phase coherence most robust, easiest to estimate, wide applicability
- mean phase coherence and related approaches are symmetric (under exchange of *v* and *w*)
 - > can not indicate direction of interaction

direction of interaction

- given phase time series from time series v and w
- observation: weak interaction induces perturbation of phases dynamics (perturbation of amplitudes can be neglected)



- need a characterization of mutual perturbations of phase dynamics

direction of interaction

from simplified phase model to *cross dependencies* (evolution map approach*)

- assumption: weakly coupled, self-sustained oscillators

$$\dot{\phi}_1(t) = \omega_1 + \kappa_1 f_1(\phi_1(t), \phi_2(t)) + \xi_1(t)$$

$$\dot{\phi}_2(t) = \omega_2 + \kappa_2 f_2(\phi_2(t), \phi_1(t)) + \xi_2(t)$$

 $f_{1,2}(\phi_{1,2})$ are coupling functions $\kappa_{1,2}$ are damping constants stochastic components $\xi_{1,2}$ for noisy or chaotic oscillators weak coupling if $\kappa_{1,2}f_{1,2} \ll \omega_{1,2}$

direction of interaction

from simplified phase model to cross dependencies

- define cross dependencies $d^{(1,2)}$

$$c_{1,2}^2 := \left\langle \left(\frac{\partial \dot{\phi}_{1,2}}{\partial \phi_{2,1}} \right)^2 \right\rangle = \kappa_{1,2} \left\langle \left(\frac{\partial f_{1,2}}{\partial \phi_{2,1}} \right)^2 \right\rangle$$

where
$$\langle (\cdot) \rangle = \int_0^{2\pi} (\cdot) d\phi_{1,2} d\phi_{2,1}$$

$$d^{(1,2)} := \frac{c_2 - c_1}{c_1 + c_2} \quad \text{with } d^{(1,2)} \in [-1, 1]$$

direction of interaction

from simplified phase model to cross dependencies

- interpretation of cross dependencies $d^{(1,2)}$

 $d^{(1,2)} = \begin{cases} +1: & \text{if system 1 drives system 1 (unidirectional coupling)} \\ 0: & \text{no driving identifiable (symmetric bidir. coupling)} \\ -1: & \text{if system 2 drives system 1 (unidirectional coupling)} \end{cases}$

direction of interaction

from simplified phase model to cross dependencies

- numerical estimation of cross dependencies $d^{(1,2)}$

define incremental phase time series

$$\Delta_{1,2}(k) = \phi_{1,2}(t_k + \tau) - \phi_{1,2}(t_k)$$

with the (noisy) mapping

$$\Delta_{1,2}(k) = \mathcal{F}_{1,2}(\phi_{1,2}(t_k), \phi_{2,1}(t_k)) + \xi(t_k)$$

approximate $\mathcal F$ with Fourier series using least-squares fit

$$\Delta_{1,2}(k) \stackrel{\text{min!}}{\approx} F_{1,2}(\phi_{1,2}(t_k), \phi_{2,1}(t_k))$$

$$= \sum_{m,n} a_{m,n}^{1,2} \cos(m\phi_{1,2} + n\phi_{2,1})$$

$$+ b_{m,n}^{1,2} \sin(m\phi_{1,2} + n\phi_{2,1})$$

direction of interaction

from simplified phase model to cross dependencies

- numerical estimation of cross dependencies $d^{(1,2)}$ with appropriately chosen orders of Fourier series, one finds:

$$c_{1,2}^2 = \left\langle \left(\frac{\partial \dot{\phi}_{1,2}}{\partial \phi_{2,1}} \right)^2 \right\rangle = 2\pi^2 \sum_{m,n} n^2 \left((a_{m,n}^{1,2})^2 + (b_{m,n}^{1,2})^2 \right)$$

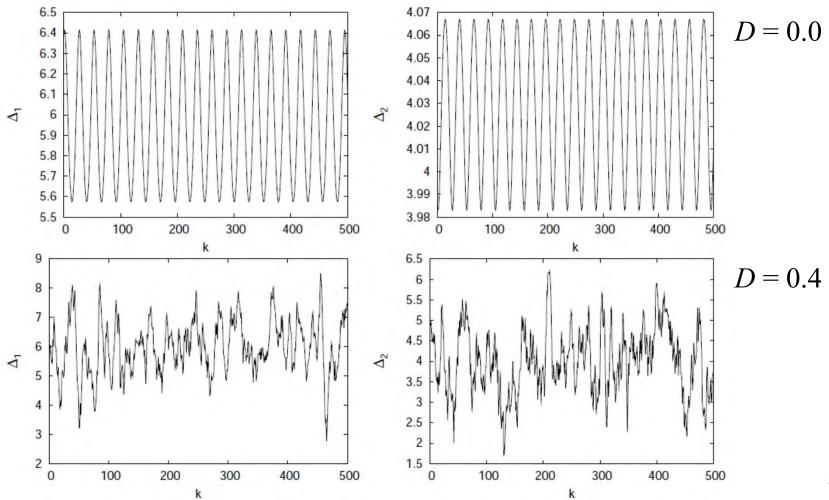
note that the least-squares fit moderately reduces noise

direction of interaction

cross dependencies

$$\dot{\phi}_{1,2} = \omega_{1,2} + \kappa_{1,2} \sin(\phi_{1,2} - \phi_{2,1}) + D\xi_{1,2}$$

incremental phase time series



examples

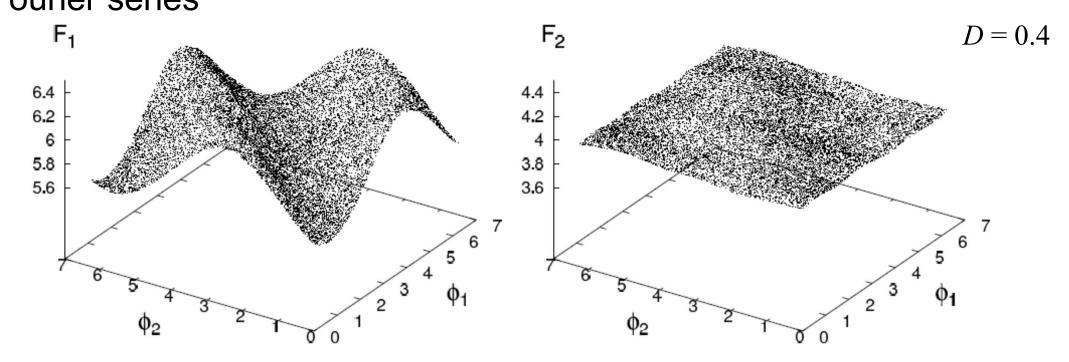
measuring interactions

direction of interaction

cross dependencies

$$\dot{\phi}_{1,2} = \omega_{1,2} + \kappa_{1,2} \sin(\phi_{1,2} - \phi_{2,1}) + D\xi_{1,2}$$

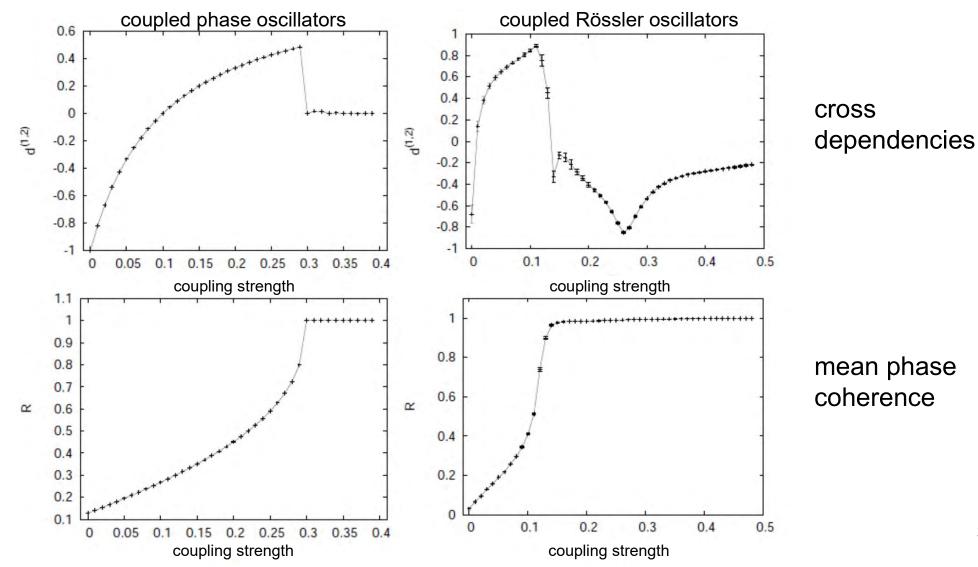
Fourier series



direction of interaction

cross dependencies

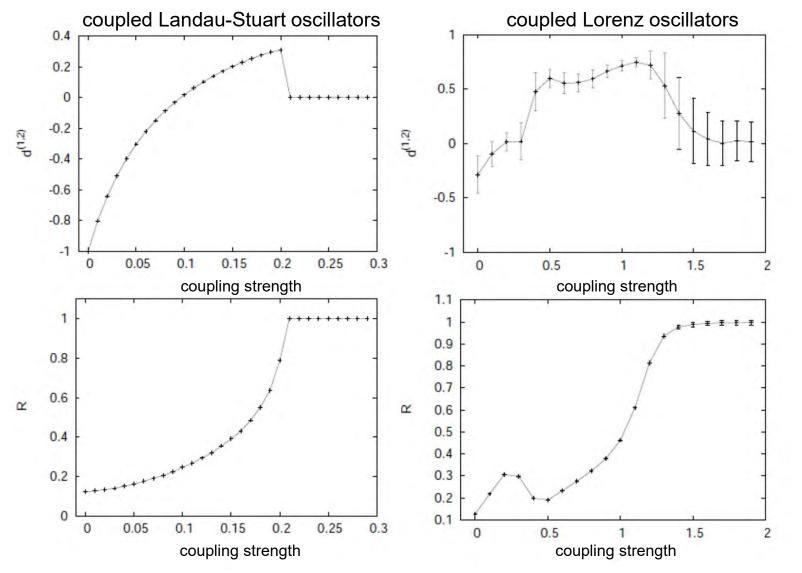
examples



direction of interaction

cross dependencies

examples



cross dependencies

mean phase coherence

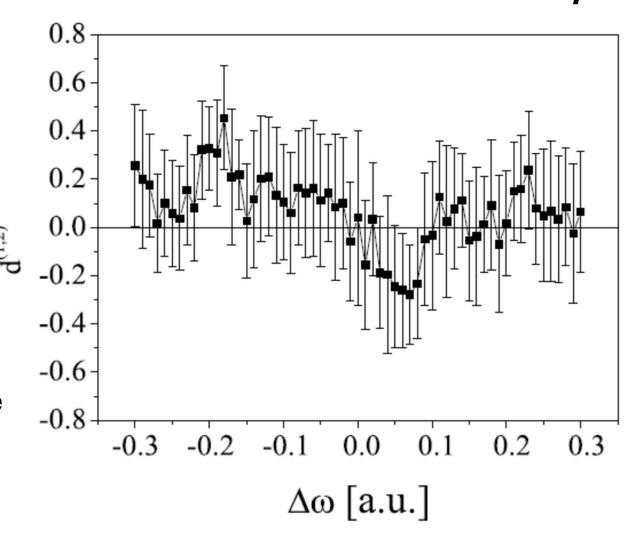
cross dependencies

uncoupled(!) Rössler oscillators with different eigen-frequencies $\omega_1 = 0.9; \ \omega_2 \in [0.6; 1.2]$ (20 realizations)

dependence on frequency detuning $\Delta\omega = \omega_1 - \omega_2$

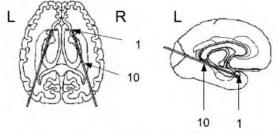
the fast system appears to drive the other system

direction of interaction examples

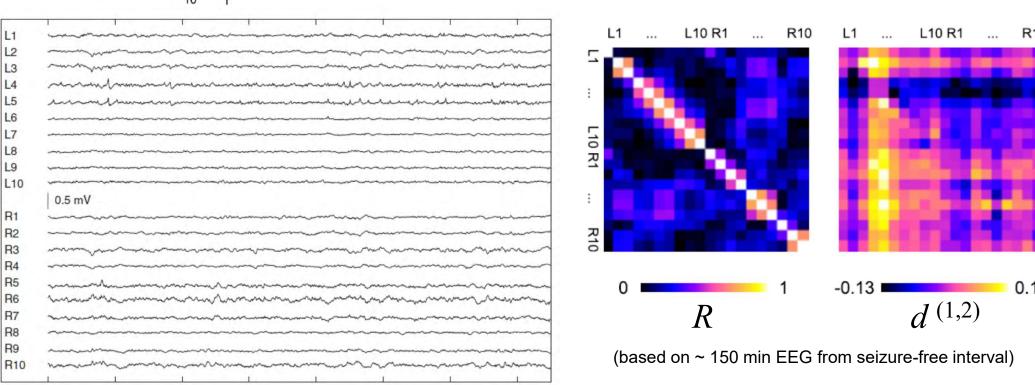


measuring interactions strength and direction of interaction

phase-synchronization *examples*



focal driving in epilepsy



12

measuring interactions strength and direction of interaction

phase-synchronization

phase-based estimators

extensions

- various data-driven estimation techniques*
- estimators for transient signals**
- multivariate (partial) estimators***

^{*}see, e.g. Porz S, Kiel M, Lehnertz K. Can spurious indications for phase synchronization due to superimposed signals be avoided?. Chaos 24, 033112, 2014.

**Wagner T, Fell J, Lehnertz K. The detection of transient directional couplings based on phase synchronization. New J. Physics 12, 053031, 2010

*** e.g. Schelter B, Winterhalder M, Dahlhaus R, Kurths J, Timmer J. Partial phase synchronization for multivariate synchronizing systems. Phys. Rev. Lett. 96, 208103, 2006; Kralemann B, Pikovsky A, Rosenblum M. Reconstructing effective phase connectivity of oscillator networks from observations. New J Physics 16, 085013, 2014; Rings T, Lehnertz K. Distinguishing between direct and indirect directional couplings in large oscillator networks: Partial or non-partial phase analyses?. Chaos 26, 093106, 2016

measuring interactions strength and direction of interaction

phase-synchronization

phase-based estimators

advantages

- (relatively) easy-to-use, fast-to-calculate
- high / moderate robustness ($R / d^{(1,2)}$) against noise

disadvantages

- consider phase information only
- require appropriate choice of algorithmic parameter
- "faster" system (eigen-frequency, noise) → driver (need reliable surrogate test for directionality)
- may be fooled by (unobserved) third system