
Fundamentals of Analyzing Biomedical Signals Interactions

Measuring Interactions

from Time Series

phase-based techniques
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Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions phase

basic idea: interaction  phase dynamics  synchronization

- the “stronger” the interaction, the more similar are the phases
- interaction-induced perturbation of phases indexes directionality

neglect amplitude information

phase  nonlinearity  interesting for chaotic systems

need to derive phase from time series
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the phase of a periodic function of 
some real variable t is the relative 
value of that variable within the 
span of each full period

phase is typically expressed as an 
angle ϕ(t)

ϕ(t)  [0°, 360°) or ϕ(t)  [0, 2)
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measuring interactions phase

from: en.wikipedia.org
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phase synchronization

classical definition (“phase locking”)

“adjustment of rhythms of oscillating objects due to a weak

interaction”

extension for noisy and chaotic systems (“weak phase locking”):

“induction of relationships between the functionals of two

processes due to an interaction”
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measuring interactions phase

M. Rosenblum et al., Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804, 1996
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Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions phase

phase synchronization of chaotic oscillators
example: non-identical uni-directionally coupled Rössler oscillators 
(C = coupling strength)

adjustment of phases
(from phase-slips to phase-locking)

amplitudes remain 
uncorrelated and chaotic
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Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions phase

phase synchronization of chaotic oscillators
example: non-identical uni-directionally coupled Rössler oscillators 
(C = coupling strength)

adjustment of phases; phase-slips

devil’s
staircase
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measuring interactions deriving phases from time series

given: time series v of some observable x and 

time series w of some observable y
and 
given some reference time point (e.g. t0 = 0)
(holds for strictly periodic functions, triggered data, impulse responses, transfer functions)

define phase relative to t0

derive imaginary part 
with e.g. Fourier transform
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measuring interactions deriving phases from time series

given: time series v of some observable x and 

time series w of some observable y

if no reference time point given
(arbitrary real-valued signals)

define phase using

- zero-crossings (or other marker-events; Rice, 1944)

- Hilbert-transform (Gabor, 1946; Panter 1965)

(- wavelet-transform (Lachaux et al., 1999)*)

*A. Bruns. Fourier-, Hilbert-and wavelet-based signal analysis: are they really different approaches? J. Neurosci. Methods, 137, 321, 2004.
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Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions deriving phases from time series

phases from zero-crossings

ansatz: successive zero-crossings correspond to completion 
of a period

- subtract mean value (demeaning) if necessary

- let tk denote beginning of a period and tk+1 the next
(e.g. via: v- →  or v+ → )

- derive phase with linear interpolation:
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Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions deriving phases from time series

phases from zero-crossings

pros:
easy
fast computation 

cons:
requires some periodicity
requires smooth signals
extremely sensitive to noise

A
 [

a.
u.

]

t [a.u.]

from: Callenbach et al., PRE 65, 051110, 2002
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measuring interactions deriving phases from time series

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions deriving phases from time series

phases from Hilbert-transform

ansatz: define instantaneous phase (t) using the analytic signal:

Hilbert-transform HT is defined as:

p.v. = Cauchy principal value 
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Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions deriving phases from time series

phases from Hilbert-transform

representation in frequency domain:
(use Fourier transform FT and convolution theorem)

instantaneous phase (possibly phase unfolding required)

instantaneous frequency

spectral power remains unchanged; phases of Fourier spectrum shifted by /2
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measuring interactions deriving phases from time series

phases from Hilbert-transform

basic example: strongly periodic oscillation

sign: historical reasons
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Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions deriving phases from time series

phases from Hilbert-transform

example: x-component 
of Rössler oscillator

phase slips
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Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions deriving phases from time series

phases from Hilbert-transform

time series analysis: how to

- some periodicity required

- duration of signal: sampling theorem; about 20 data points/period;

stationarity (at least approximate)

- offsets not taken into account, needs demeaning (subtract mean)

- if you use FFT on finite time series: 

requires trimming/tapering

tapering can lead to distortions

- unfolding of phases required 

- computational speed: O(N log(N))



16

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions deriving phases from time series

phases from Hilbert-transform

time series analysis: how to
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Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions strength of interaction

- given phase time series from time series v and w
- phase synchronization if phase difference time series bounded:

- if phases derived from Hilbert transform: any (n, m)
- if phases derived from zero-crossings: n = m = 1
- need to test boundedness
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Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions strength of interaction

statistical ansatz: mean phase coherence*

- phase differences limited to (0,2] (due to arcus tangens) 
 natural circularity  circular statistics**

- estimate moments of “circular distributions” by transforming the
phase differences onto unit circle in complex plane

*M Hoke, K Lehnertz, C Pantev, B Lütkenhöner. Spatiotemporal aspects of synergetic processes in the auditory cortex as revealed by magnetoencephalogram, in: E. Basar, T.H. Bullock (Eds.), Series 
in Brain Dynamics, Vol. 2, Springer, Berlin, 1989. F Mormann, K Lehnertz, P David, CE Elger. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy 
patients. Physica D, 144, 358, 2000
** e.g. KV Mardia, P Jupp. Directional Statistics, John Wiley and Sons Ltd., 2000
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measuring interactions strength of interaction

statistical ansatz: mean phase coherence

R  [0,1]
R = 1 complete phase synchronization (full phase locking)
R = 0 no phase synchronization

S = 1 - R (circular variance)

weak
coupling

strong
coupling
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diffusively coupled oscillators 
(with eigen-frequencies v andw)

single realization

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions strength of interaction

statistical ansatz: mean phase coherence examples

coupling strength c
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measuring interactions strength of interaction

statistical ansatz: mean phase coherence examples

diffusively coupled 
Lorenz oscillators

single realization

coupling strength c
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Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions strength of interaction

statistical ansatz: mean phase coherence examples

diffusively coupled 
Rössler oscillators

single realization

coupling strength c
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analysis based on 
y-components
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measuring interactions strength of interaction

statistical ansatz: mean phase coherence examples

diffusively coupled 
Lorenz oscillators

single realization

coupling strength c
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analysis based on 
x-components
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measuring interactions strength of interaction

statistical ansatz: mean phase coherence examples

robustness against noise for
diffusively coupled oscillators

no coupling vs. 
maximum coupling

single realization

c = 0.0

c = 0.0

c = max

c = max

white noise

random walk
noise
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measuring interactions strength of interaction

statistical ansatz: mean phase coherence examples

robustness against noise for
diffusively coupled Lorenz 
oscillators (y-component)

no coupling vs. 
maximum coupling

single realization

c = 0.0

c = max

noise is phase-
randomized
surrogate of Lorenz
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measuring interactions strength of interaction

- other approaches (based on information theory; Tass et al., 1998)
index based on Shannon entropy
index based on conditional probability

- different approaches yield similar findings (application dependent)

- mean phase coherence most robust, easiest to estimate, 
wide applicability

- mean phase coherence and related approaches are symmetric 
(under exchange of v and w)

 can not indicate direction of interaction



27

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions direction of interaction

- given phase time series from time series v and w
- observation: weak interaction induces perturbation of phases  
dynamics (perturbation of amplitudes can be neglected)

- need a characterization of mutual perturbations of phase dynamics

perturbation 
relaxation
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from simplified phase model to cross dependencies 
(evolution map approach*)
- assumption: weakly coupled, self-sustained oscillators

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions direction of interaction

* MG Rosenblum, AS Pikovsky. Detecting direction of coupling in interacting oscillators. Phys. Rev. E, 64:045202(R), 2001.



29

from simplified phase model to cross dependencies 

- define cross dependencies d (1,2)

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions direction of interaction

* MG Rosenblum, AS Pikovsky. Detecting direction of coupling in interacting oscillators. Phys. Rev. E, 64:045202(R), 2001.
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from simplified phase model to cross dependencies 

- interpretation of cross dependencies d (1,2)

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions direction of interaction

* MG Rosenblum, AS Pikovsky. Detecting direction of coupling in interacting oscillators. Phys. Rev. E, 64:045202(R), 2001.
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from simplified phase model to cross dependencies 

- numerical estimation of cross dependencies d (1,2)

define incremental phase time series

with the (noisy) mapping

approximate F with Fourier series using least-squares fit

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions direction of interaction
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from simplified phase model to cross dependencies 

- numerical estimation of cross dependencies d (1,2)

with appropriately chosen orders of Fourier series, one finds:

note that the least-squares fit moderately reduces noise

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions direction of interaction

* MG Rosenblum, AS Pikovsky. Detecting direction of coupling in interacting oscillators. Phys. Rev. E, 64:045202(R), 2001.
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cross dependencies examples

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions direction of interaction

D = 0.0

D = 0.4

incremental
phase
time series
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measuring interactions direction of interaction

D = 0.4
Fourier series

cross dependencies examples
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cross dependencies examples

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions direction of interaction

coupled phase oscillators coupled Rössler oscillators

coupling strengthcoupling strength

coupling strengthcoupling strength

cross
dependencies

mean phase
coherence
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cross dependencies examples

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions direction of interaction

coupled Landau-Stuart oscillators coupled Lorenz oscillators

coupling strengthcoupling strength

coupling strengthcoupling strength

cross
dependencies

mean phase
coherence
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cross dependencies examples

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions direction of interaction

uncoupled(!)
Rössler oscillators
with different
eigen-frequencies
1 = 0.9; 2 [0.6; 1.2]
(20 realizations)

dependence on 
frequency detuning =1-2

the fast system appears to drive
the other system
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measuring interactions phase-synchronization

strength and direction of interaction examples

focal driving in epilepsy

R d (1,2)

(based on ~ 150 min EEG from seizure-free interval)

Osterhage H, Mormann F, Wagner T, Lehnertz K. Detecting directional coupling in the human epileptic brain: Limitations and potential pitfalls. Phys. Rev E. 77, 011914, 2008
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measuring interactions phase-synchronization

strength and direction of interaction

phase-based estimators

extensions

- various data-driven estimation techniques*

- estimators for transient signals**

- multivariate (partial) estimators***

*see, e.g. Porz S, Kiel M, Lehnertz K. Can spurious indications for phase synchronization due to superimposed signals be avoided?. Chaos 24, 033112, 2014.
**Wagner T, Fell J, Lehnertz K. The detection of transient directional couplings based on phase synchronization. New J. Physics 12, 053031, 2010
*** e.g. Schelter B, Winterhalder M, Dahlhaus R, Kurths J, Timmer J. Partial phase synchronization for multivariate synchronizing systems. Phys. Rev. Lett. 96, 208103, 2006; 
Kralemann B, Pikovsky A, Rosenblum M. Reconstructing effective phase connectivity of oscillator networks from observations. New J Physics 16, 085013, 2014;
Rings T, Lehnertz K. Distinguishing between direct and indirect directional couplings in large oscillator networks: Partial or non-partial phase analyses?. Chaos 26, 093106, 2016



40

Fundamentals of Analyzing Biomedical Signals Interactions

measuring interactions phase-synchronization

strength and direction of interaction

phase-based estimators

advantages
- (relatively) easy-to-use, fast-to-calculate
- high / moderate robustness (R / d (1,2)) against noise

disadvantages
- consider phase information only
- require appropriate choice of algorithmic parameter
- “faster” system (eigen-frequency, noise)  driver

(need reliable surrogate test for directionality)
- may be fooled by (unobserved) third system


