magnetic resonance imaging (MRI)

Magnetic resonance image of a mid-saggital section through the head of a 42 -year-old woman.

principle

- active imaging through exposure of energy
(strong constant magnetic field + electromagnetic pulses)
and
- passive imaging through recording of "endogenous" signals (spin ensembles as radio wave emitter)
- characterize distribution of magnetization in body tissue depending on structure, function, and metabolism
- tomographic imaging technique (cf. CT, SPECT, and PET) (gr. tomos ($\tau \mathrm{o} \mu \mathrm{o} \sigma$) - slice)
- MRI scanner provides multi-dimensional data (image) of spatial distribution of physical observables
- 2D slice with arbitrary orientation
- 3D volume data
- 4D images (spatial + spectral distributions)
- MRI signals emitted from the body
"emission" tomography; (cf. PET, SPECT)
but does not require radioactive substances!
- MRI operates in radio frequency range
no ionizing radiation
- MRI images provide multiple information
grey level of pixel (signal intensity) depends on: density of nuclear spins ρ spin-lattice relaxation time T_{1} spin-spin relaxation time T_{2} molecular movements (transport, diffusion, perfusion) susceptibility chemical shift

magnetic resonance imaging (MRI)

frequency [Hz]	wave length [m]	photon energy [eV]	type of radiation	effects on molecular level
10^{26}	10^{-18}	10^{12}	x-rays and gamma-rays	dissociation
10^{24}	10^{-16}	10^{10}		
10^{22}	10^{-14}	10^{8}		
10^{20}	10^{-12}	10^{6}		
10^{18}	10^{-10}	10^{4}		
10^{16}	10^{-8}	10^{2}	UV radiation	e- excitation (shell)
10^{14}	10^{-6}	10^{0}	visible light	oscillation
10^{12}	10^{-4}	10^{-2}	IR radiation	rotation
10^{10}	10^{-2}	10^{-4}		
10^{8}	10^{0}	10^{-6}	UKW	MRI ??
10^{6}	10^{2}	10^{-8}	KW	
10^{4}	10^{4}	10-10	MW	
10^{2}	10^{6}	10^{-12}	LW	
10^{0}		10-14		

$$
\text { wave length > } 0.3 \mathrm{~m}
$$

insufficient spatial resolution

ansatz:
superimpose RF-fields onto spatially variable but otherwise constant magnetic field

$$
+
$$

exploit resonance absorption of specific nuclei (spin $1 / 2$) in biological tissue $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F},{ }^{23} \mathrm{Na},{ }^{31} \mathrm{P}\right)$

\downarrow

spatial mapping of nuclear magnetization

contents:

- historical overview
- physical basics
classical, quantum-mechanical description
- basics of MRI
from signal to image, recording techniques contrast, resolution, signal-noise ratio
- applications
(images: Dössel, 2000; Morneburg, 1995; Siemens, Philips, internet)

magnetic resonance imaging (MRI)

Nuclear Induction

F. Bloch
Stanford University, California
(Received July 19, 1946)

The magnetic moments of nuclei in normal matter will result in a nuclear paramagnetic polarization upon establishment of equilibrium in a constant magnetic field. It is shown that a radiofrequency field at right angles to the constant field causes a forced precession of the total polarization around the constant field with decreasing latitude as the Larmor frequency approaches adiabatically the frequency of the r-f field. Thus there results a component of the nuclear polarization at right angles to both the constant and the r-f field and it is shown that under normal laboratory conditions this component can induce observable voltages. In Section 3 we discuss this nuclear induction, considering the effect of external fields only, while in Section 4 those modifications are described which originate from internal fields and finite relaxation times.

magnetic resonance imaging (MRI)

PHYSICAL REVIEW

VOLUME 80, NUMBER 4
NUVEMBER 15,1950

Spin Echoes* \dagger

E. L. Hahn \ddagger
Physics Department, University of Illinois, Urbana, Illinois
(Received May 22, 1950)

Intense radiofrequency power in the form of pulses is applied to an ensemble of spins in a liquid placed in a large static magnetic field H_{0}. The frequency of the pulsed r-f power satisfies the condition for nuclear magnetic resonance, and the pulses last for times which are short compared with the time in which the nutating macroscopic magnetic moment of the entire spin ensemble can decay. After removal of the pulses a non-equilibrium configuration of isochromatic macroscopic moments remains in which the moment vectors precess freely. Each moment vector has a magnitude at a given precession frequency which is determined by the distribution of Larmor frequencies imposed upon the ensemble by inhomogeneities in H_{0}. At times determined by pulse sequences applied in the past the constructive interference of these moment vectors gives rise to observable spontaneous nuclear induction signals. The properties and underlying principles of these spin echo signals are discussed with use of the Bloch theory. Relaxation times are measured directly and accurately from the measurement of echo amplitudes. An analysis includes the effect on relaxation measurements of the self-diffusion of liquid molecules which contain resonant nuclei. Preliminary studies are made of several effects associated with spin echoes, including the observed shifts in magnetic resonance frequency of spins due to magnetic shielding of nuclei contained in molecules.

magnetic resonance imaging (MRI)

SCIENCE

Tumor Detection by Nuclear Magnetic Resonance

Raymond Damadian

Abstract. Spin echo nuclear magnetic resonance measurements may be used as a method for discriminating between malignant tumors and normal tissue. Measurements of spin-lattice $\left(\mathrm{T}_{1}\right)$ and spin-spin $\left(\mathrm{T}_{n}\right)$ magnetic relaxation times were made in six normal tissues in the rat (muscle, kidney, stomach, intestine, brain. and liver) and in two malignant solid tumors, Walker sarcoma and Novikof hepatoma. Relaxation times for the two malignant tumors were distinctly outside the range of values for the normal cissues studied, an indication that the malignant tissues were charactarized by an increase in the motional freedom of tissue water molecules. The possibility of using magnetic relaxation methods for mapid discrimination between benign and malignant surgical specimens has also been considered. Spin-lattice relaxation times for two benign fibroadenomas were distinct from those for borh malignant tissues and were the same as those of muscle.

magnetic resonance imaging (MRI)

history

1946 nuclear magnetic resonance (NMR)
F. Bloch, W.W. Hansen, M. Packard. Phys Rev 69, 127, 1946
E.M. Purcell, H.C. Torrey, R.V. Pound. Phys Rev 69, 37, 1946

1950 E.L. Hahn: Spin echoes. (Phys Rev 80, 580, 1950)
1950 - 1970 applications of NMR in physics and chemstry (structural analyses)

1952 Nobel price awarded to Bloch and Purcell
1970 first MRI of brain (recording: 8 h , image proc.: 72 h)
1971 R. Damadian: tumor and normal tissue have different NMR relaxation times (MRI as diagnostic method)

magnetic resonance imaging (MRI)

history

1973 P. Lauterbur: MRI imaging with gradient fields (Nature, 242, 190)

1975 R. Ernst: MRI with phase- and frequency encoding and use of Fourier transform

1977 R. Damadian: first whole-body scan (recording: 4-5 h)

1977 P. Mansfield: Echo-Planar-Imaging (EPI)

PATENTEDFEE $51914 \quad 3,789,832$

1980 Edelstein et al.: whole-body scan with Ernst technique (data acquisition: 5 min/slice; 1986: 5 s/slice)
since 1980: first commercial MRI systems

magnetic resonance imaging (MRI)

history

1986 - 1989: Gradient Echo Imaging, NMR microscope
1990 Ogawa et al.: BOLD effect
1991 Nobel price awarded to R. Ernst
1992 Kwong et al.: BOLD + neuronal activity
2003 Nobel price awarded to P. Lauterbur and P. Mansfield
standard technique for clinical diagnosis ca. 60 Mio. examinations worldwide
> 30.000 installations worldwide

compass needle in magnetic field the magnetic dipole moment can be assessed through measuring the torque in a homogeneous magnetic field

$$
\begin{aligned}
& \quad \overrightarrow{\mathrm{T}}=\overrightarrow{\mathrm{m}} \times \overrightarrow{\mathrm{B}} \\
& \overrightarrow{\mathrm{~T}}=\text { torque } \\
& \overrightarrow{\mathrm{m}}=\text { magnetic dipole moment } \\
& \overrightarrow{\mathrm{B}}=\text { magnetic flux density }
\end{aligned}
$$

symbol $B=$ magnetic induction or flux density
symbol $H=$ magnetic field!
symbol $B=$ magnetic field typically used in MRI literature

magnetization of paramagnetic and diamagnetic materials

diamagnetic materials:

paramagnetic materials :
alignment of elementary magnets (e- spin) to external \vec{B} field \rightarrow increased \vec{B} field inside material
the vectorial sum of all magnetic moments in some volume element wrt the size of the volume element is called magnetization:

$$
\overrightarrow{\mathrm{M}}=\frac{\mathrm{d} \overrightarrow{\mathrm{~m}}}{\mathrm{dV}}
$$

for a probe composed of different materials, we have:
$M=M(x, y, z)$

magnetic gyroscope in constant magnetic field

magnetic gyroscope: rotating object with magn. dipole moment \vec{m}

$$
\begin{aligned}
& \overrightarrow{\mathrm{T}}=\frac{\mathrm{d} \overrightarrow{\mathrm{~L}}}{\mathrm{dt}}=\overrightarrow{\mathrm{m}} \times \overrightarrow{\mathrm{B}} \\
& \mathrm{~T}=-\mathrm{L} \cdot \omega_{0} \cdot \sin \alpha=\mathrm{m} \cdot \mathrm{~B} \cdot \sin \alpha \\
& \omega_{0}=-\frac{\mathrm{m} \cdot \mathrm{~B}}{\mathrm{~L}}=-\gamma \cdot \mathrm{B} \quad \begin{array}{l}
\text { angular velocity } \\
\text { of } \\
\text { precession }
\end{array} \\
& \mathrm{L}=\text { angular momentum } \\
& \gamma=\frac{m}{\mathrm{~L}}=\text { gyromagnetic ratio }
\end{aligned}
$$

precession of a magnetic gyroscope in \vec{B} field

magnetic gyroscope in constant magnetic field

laboratory system

coordinate system that rotates around z -axis

gradient fields (1)

special case of an inhomogeneous field B_{G}, whose z-component varies linearly along some predefined direction (x, y, z) (direction of gradient)
z-gradient field

$$
B_{\mathrm{G}, \mathrm{z}}=G_{z} z
$$

y-gradient field

$$
B_{\mathrm{G}, \mathrm{z}}=G_{y} y
$$

x-gradient field

$$
B_{\mathrm{G}, \mathrm{z}}=G_{x} x
$$

gradient fields (2)

let $B_{\mathrm{z}}=B_{00}+G_{z} z$; let $B=\left(0,0, B_{z}\right)$ denote field gradient in z-direction
with: $\omega_{0}=\gamma B=\gamma B_{00}+\gamma G_{z} z=\omega_{00}+\gamma G_{z} z$
(where $\omega_{0}=$ local precession frequency and $\omega_{00}=$ precession frequency at $z=0=$ center of MRI system)
we have: angular velocity of precession ω_{0} depends linearly on z

- all gyroscopes in x - y-plane precess with identical angular velocity
- in a coordinate system that rotates with ω_{00}, one observes gyroscopes with $z>0$ to advance and those with $z<0$ to retard

gradient fields (3)

precession in a gradient field

stationary
laboratory system

rotating

 frame
magnetic gyroscope in a constant magnetic field with a superimposed transversal alternating magnetic field (1)
stationary field B_{z} in z-direction and an alternating magnetic field B_{T} that rotates with frequency ω_{T} in the $x-y$-plane
alternating magnetic field:

$$
\begin{aligned}
& B_{x}=B_{T} \cdot \cos \omega_{T} t=\operatorname{Re}\left\{B_{T} \cdot e^{j \omega \omega_{t} t}\right\} \\
& B_{y}=B_{T} \cdot \sin \omega_{T} t=\operatorname{lm}\left\{B_{T} \cdot e^{j \omega T t}\right\}
\end{aligned}
$$

magnetic gyroscope in a constant magnetic field with a superimposed transversal alternating magnetic field (2)
additive superposition of B_{z} and B_{T} :
lateral view
top view

stationary laboratory system
magnetic gyroscope in a constant magnetic field with a superimposed transversal alternating magnetic field (3)
consider the case $\omega_{\mathrm{T}}=\omega_{0}=\gamma B_{z}$ (transversal field rotates with angular velocity of precession)
\rightarrow direction of magnetic dipole moment is tilted from its resting position (z-direction) due to the alternating field

top view

- magn. dipole moment
$\mathrm{B}=\mathrm{B}_{\mathrm{z}}+\mathrm{B}_{\mathrm{T}}$
magnetic gyroscope in a constant magnetic field with a superimposed transversal alternating magnetic field (4)
direction of magnetic dipole moment is tilted from its resting position (z-direction) due to the alternating field
stationary
laboratory system

rotating frame

magnetic gyroscope in a constant magnetic field with a superimposed transversal alternating magnetic field (5a)
- magnetic dipole moment precesses around $\vec{B}=\overrightarrow{B_{\mathrm{z}}}+\overrightarrow{B_{\mathrm{T}}}$
- for $\omega_{\mathrm{T}}=\omega_{0}$:
amplification of phenomena "precession" and "wobbling due to \vec{B}_{T} "
- precession also starts with $\vec{m}_{0} \| \overrightarrow{e_{z}}$
- length of \vec{m}_{0} remains constant
- after some time T_{90}, \vec{m} is in x - y-plane (even if $\vec{B}_{\mathrm{T}} \ll \overrightarrow{B_{z}}$)
- \vec{m} points to negative z-direction after $2 \cdot T_{90}$
magnetic gyroscope in a constant magnetic field with a superimposed transversal alternating magnetic field (5b)

90°-HF-pulse in stationary and in rotating frame
magnetic gyroscope in a constant magnetic field with a superimposed transversal alternating magnetic field (6) equation of motion of magnetic dipole:

$$
\frac{d \vec{m}^{\prime}(t)}{d t}=\gamma \vec{m}^{\prime}(t) \times \vec{B}_{T}
$$

angular velocity of increasing α :

$$
\omega_{F}=\frac{d \alpha}{d t}=-\frac{T}{L \sin \alpha}=-\frac{m B_{T} \sin \alpha}{L \sin \alpha}=-\frac{m}{L} B_{T}=-\gamma B_{T}
$$

$$
\begin{array}{ll}
\Rightarrow & \alpha=\text { flip angle } \\
\omega_{F}=\gamma B_{T} & \text { (convention) } \\
\alpha=\gamma B_{T} \tau & \tau=\text { pulse duration } \\
B_{\mathrm{T}}=\text { amplitude of alternating field } \\
\text { in } x \text {-direction }
\end{array}
$$

magnetic gyroscope in a constant magnetic field with a superimposed transversal alternating magnetic field (7a) data acquisition (1): assumptions:

- transversal field \vec{B}_{T} moves magnetic moment (from z-direction) into $x-y$-plane and is the turned off (pulse with duration τ)
- magnetic moment rotates in $x-y$ plane without external influences
direction of normal of antenna coil is perpendicular to z-axis flux proportional to transversal component of $\vec{m}: m_{\mathrm{T}}$

$$
\begin{aligned}
& \text { with } \vec{M}=\frac{d \vec{m}}{d V} \\
& \Rightarrow \\
& \Phi_{\mathrm{mag}} \sim M_{T} \cos \left(\omega_{0} t\right) \\
& U \sim M_{T} \omega_{0} \sin \left(\omega_{0} t\right)
\end{aligned}
$$

magnetic gyroscope in a constant magnetic field with a superimposed transversal alternating magnetic field (7b) data acquisition (2):
induced voltage in antenna is HF-signal with frequency ω_{00} (or near ω_{00}, if probe is placed in gradient field)
measurement technique (quadrature detector):
down-mixing of signal of antenna with HF-signal with frequency ω_{00} (precession frequency at $z=0$)
corresponds to multiplication with reference signal
magnetic gyroscope in a constant magnetic field with a superimposed transversal alternating magnetic field (7c) data acquisition (3):
real part:

$$
\begin{aligned}
U_{R} & =U_{1} \sin \left(\omega_{00} t\right) U_{2} \sin \left(\left(\omega_{00}+\Delta \omega\right) t\right) \\
& =U_{1} U_{2} \frac{1}{2}\left\{\cos (\Delta \omega t)-\cos \left(\left(2 \omega_{00}+\Delta \omega\right) t\right\}\right.
\end{aligned}
$$

$\Delta \omega$ via low-pass filtering

imaginary part
(phase shifter required, since cos-term symmetric \rightarrow you loose the sign of $\Delta \omega!$)

$$
\begin{aligned}
U_{I} & =U_{1} \cos \left(\omega_{00} t\right) U_{2} \sin \left(\left(\omega_{00}+\Delta \omega\right) t\right) \\
& =U_{1} U_{2} \frac{1}{2}\left\{\sin (\Delta \omega t)+\sin \left(\left(2 \omega_{00}+\Delta \omega\right) t\right\}\right.
\end{aligned}
$$

$$
U^{*}=U_{R}+\mathrm{i} U_{i} \sim m_{T}
$$

- U^{*} rotates in in the complex plane with $\Delta \omega$
- measures m_{T} in a rotating (with ω_{00}) frame
magnetic gyroscope in a constant magnetic field with a superimposed transversal alternating magnetic field (7d) data acquisition (4):
$\Delta \omega<0$

signal after mixer 2

signal after lowpass 2
pointer in complex plane

magnetic gyroscope in a constant magnetic field with a superimposed transversal alternating magnetic field (7e) data acquisition (5):
$\Delta \omega>0$

signal after mixer 2

signal after lowpass 2
pointer in complex plane

protons, neutrons, electrons as (quantum mechanical) magnetic gyroscopes
gyromagnetic ratio of a rotating charged particle:

$$
\vec{\mu}=\vec{\gamma} \cdot \overrightarrow{\mathrm{L}}
$$

$\vec{\mu}, \vec{m}=$ magnetic dipole moment
$\vec{L}=$ angular momentum
$\gamma=$ gyromagnetic ratio
precession of nuclear spins in a constant magnetic field:
if μ is aligned in direction of $B \rightarrow$ precession with Larmor frequency

$$
\omega_{0}=\gamma B=g_{L} \frac{q}{2 m} B
$$

gyromagnetic ratio of some nuclei

nucleus	${ }^{1} \mathrm{H}$	${ }^{31} \mathrm{P}$	${ }^{19} \mathrm{~F}$	${ }^{13} \mathrm{C}$
$\gamma^{*}[\mathrm{MHz} / \mathrm{T}]$	42,6	17,2	40,0	10,8

precession frequency of protons

B	$\mathrm{f}_{0}=\gamma^{*}\left[\frac{\mathrm{MHz}}{\mathrm{T}}\right] \cdot \mathrm{B}[\mathrm{T}]$			$\omega_{0}=2 \pi f_{0}$
	$50 \mu \mathrm{~T}$	0,5 T	1 T	4 T
f_{0}	$2,13 \mathrm{kHz}$	21,3 MHz	$42,6 \mathrm{MHz}$	170,4

nucleus	spin quantum number I	gyro magnetic ratio γ rad s $\left.{ }^{-1} \mathrm{~T}^{-1}\right]$	natural abundance of isotopes [\%]	sensitivity for $\mathrm{B}_{0}=$ const $[\%]$ wrt ${ }^{1} \mathrm{H}$
${ }^{1} \mathrm{H}$	$1 / 2$	2,675	99,98	100,00
${ }^{31} \mathrm{P}$	$1 / 2$	1,084	100,00	6,65
${ }^{23} \mathrm{Na}$	$3 / 2$	0,708	100,00	9,27
${ }^{13} \mathrm{C}$	$1 / 2$	0,673	1,11	$1,75 \times 10^{-2}$
${ }^{14} \mathrm{~N}$	1	0,193	99,63	$1,0 \times 10^{-1}$
${ }^{17} \mathrm{O}$	$5 / 2$	$-0,363$	0,038	$1,11 \times 10^{-3}$
${ }^{19} \mathrm{~F}$	$1 / 2$	2,518	100,00	83,4
${ }^{35} \mathrm{Cl}$	$3 / 2$	0,262	75,77	$3,58 \times 10^{-1}$
${ }^{39} \mathrm{~K}$	$3 / 2$	0,125	93,26	$4,76 \times 10^{-2}$
${ }^{25} \mathrm{Mg}$	$5 / 2$	$-0,164$	10,00	$2,68 \times 10^{-2}$
${ }^{43} \mathrm{Ca}$	$7 / 2$	$-0,180$	0,135	$8,68 \times 10^{-4}$
${ }^{33} \mathrm{~S}$	$3 / 2$	0,205	0,75	$1,70 \times 10^{-3}$

example:

- proton $\left({ }^{1} \mathrm{H}\right)$ measurement
- constant B-field (1T) in z-direction
- gradient field ($3 \mathrm{mT} / \mathrm{m}$) in z-direction
- at $z=0: \mathrm{f}_{00}=42,6 \mathrm{MHz}$
how much is the frequency shift Δf of the spins at $\mathrm{z}=10 \mathrm{~mm}$?

$$
\begin{aligned}
\Delta f_{(10 \mathrm{~mm})} & =\gamma^{*}\left[\frac{\mathrm{MHz}}{\mathrm{~T}}\right] G_{z}\left[\frac{\mathrm{~T}}{\mathrm{~m}}\right] z[\mathrm{~m}] \\
& =42.6 \times 3 \cdot 10^{-3} \times 10 \cdot 10^{-3}[\mathrm{MHz}] \\
& =1.28[\mathrm{kHz}]
\end{aligned}
$$

(cf. quadrature detector)
frequency shift does not depend on the strength of the constant field !

directional quantization of angular momentum

$|\vec{L}|=\sqrt{l(l+1)} \hbar \quad \vec{L}=$ angularmomentum, $l=$ secondary quantum number
$L_{z}=m_{l} \hbar \quad m_{l}=$ magnetic quantum number

$$
m_{l} \in\{-l,-l+1, \ldots,+l\}
$$

for spin-1/2-particles(protons!), we have:
$|\vec{L}|=\sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)} \hbar=\frac{\sqrt{3}}{2} \hbar$
$L_{z}= \pm \frac{1}{2} \hbar$

with uncertainty principle: is L_{z} defined, then L_{x}, L_{y} undefined
magnetic dipole moment: $\left\langle\mu_{z}\right\rangle= \pm \gamma \frac{1}{2} \hbar$

energy levels (spin-1/2 particles)

class. magn. dipole in \vec{B}-field: \quad spin $-1 / 2$ particles in $\vec{B}=\left(0,0, B_{z}\right)$-field :
$E=-\vec{m} \cdot \vec{B}$

$$
E=-\mu_{z} B_{z}=\mp \gamma \frac{1}{2} \hbar B_{z}
$$

Zeeman effect (weak field)
Paschen-Back effect (strong fields)

energy levels and resonance

- photons, that can induce a spin flip, have energy of:

$$
\hbar \omega_{0}=\gamma \hbar B_{z}
$$

- the related electromagnetic wave has angular velocity:

$$
\omega_{0}=\gamma B_{z}
$$

- since $\omega_{0}=$ Larmor frequency \rightarrow resonance phenomenon
- absorption line is Lorentzian with life time T_{2} :

$$
\sim \frac{T_{2}}{1+\left(\omega-\omega_{0}\right)^{2} T_{2}^{2}}
$$

population of energy levels

$N^{+}=$number of spin-ups (upper energy level)
$N^{-}=$number of spin-downs (lower energy level)
with Boltzmann statistics, we have:

$$
\frac{N^{-}}{N^{+}}=e^{(\Delta E / k T)}=e^{\left(+\gamma \hbar B_{0} / k T\right)}
$$

with small values of argument of exponential: $\frac{N^{-}}{N^{+}}=1+\gamma \hbar B_{0} / k T$
example: proton measurement with $1 \mathrm{~T} B_{0}$-field at $37^{\circ} \mathrm{C}(310 \mathrm{~K})$:

$$
\frac{N^{-}}{N^{+}}=1.0000066 \propto 6.6 \mathrm{ppm}
$$

macroscopic magnetization

$$
\begin{aligned}
M_{z} & =\left(N^{-}-N^{+}\right)\left\langle\mu_{z}\right\rangle / V \\
N^{-} & =N^{+}+N^{+} \gamma \hbar B_{0} / k T \\
N^{-}-N^{+} & \approx \frac{N}{2} \gamma \hbar B_{0} / k T \\
M_{z} & =\frac{N}{2} \gamma \hbar B_{0}\left\langle\mu_{z}\right\rangle / k T V \\
& =\frac{N}{2} \gamma \hbar B_{0} \frac{1}{2} \gamma \hbar / k T V=\left(\frac{N}{V}\right)\left(\gamma^{2} \hbar^{2} / 4 k T\right) B_{0}
\end{aligned}
$$

$1 \mathrm{~mm}^{3}$ water contains $6.7 \cdot 10^{19}$ protons
with $B_{0}=1 \mathrm{~T}$ and $T=37^{\circ} \mathrm{C}$, we have: $\quad M_{z} \sim 3 \cdot 10^{-3} \mathrm{~A} / \mathrm{m}$
magnetization has z-component only (x, y-components "undefined")
q.m. gyroscope in constant magnetic field with superimposed transversal alternating magnetic field an ensemble of quantum-mechanic spins can be viewed as a classical magnetic gyroscope

- constant field: ground state = longitudinal magnetization
- magnetic moment m in alternating field B_{T} is tilted from its resting position in a spiral-like manner (precession)
- length of m remains constant: $|\vec{m}|=1 / 2 \gamma \hbar$
- if $\omega_{\mathrm{T}}=\omega_{0}$ (resonance condition): magnetic moment m of spin ensembles is turned away from z-axis (resonance phenomenon)
- after time T_{90}, m is in x - y-plane, measurable mean magnetic moment, precession with $\omega_{0}=\gamma B$
- after time $2 \cdot T_{90}, m$ points to negative z-direction
$-\alpha=\gamma \cdot B_{\mathrm{T}} \cdot \tau$ (flip angle) is achieved with irradiating a transversal wave with amplitude B_{T} lasting time τ

relaxation to thermic equilibrium

without external forcing: magnetic gyroscope continues to precesses with angle α between B and m ($\alpha=m_{z}=$ const.)
in human body: interactions with environment:
spin-lattice relaxation or longitudinal relaxation
(T_{1} time) (interactions with surrounding atoms)
spin-spin relaxation or transversal relaxation
(T_{2} time)
("collisions" with other magnetic gyroscopes)
cf. Bloch equations

spin-lattice relaxation

following an excitation, the system returns to its equilibrium state due to interactions with the lattice (T 1 time)
longitudinal relaxation: $\frac{d M_{z}}{d t}=-\left(M_{z}-M_{0}\right) / T_{1}$
M_{z} : longitudinal magnetization
M_{0} : Iongitudinal magnetization in thermal equilibrium
T_{1} : time constant for relaxation

inversion recovery (IR)

spin-lattice relaxation (T_{1} time)

spin-spin relaxation

transversal magnetization M_{T} "dephases" due to spin-spin interaction (T_{2} time)
transversal magnetization M_{T} "dephases" due to different precession frequencies of spin-ensembles ($\mathrm{T}_{2}{ }^{*}$ time)

$$
\begin{aligned}
& M_{T}(t)=M_{T 0} e^{-t / T_{2}^{*}} \\
& \frac{1}{T_{2}^{*}}=\frac{1}{T_{1}}+\frac{1}{T_{2}}
\end{aligned}
$$

we always have: $\mathrm{T}_{2}{ }^{*} \leq \mathrm{T}_{1}$

spin-spin relaxation (dephasing)

spin-spin relaxation (T_{2} time)

T_{1} - and T_{2} times for different tissues

tissue	T_{1} in ms	T_{2} in ms
muscle	730 ± 130	47 ± 13
heart	750 ± 120	57 ± 16
liver	420 ± 90	43 ± 14
kidneys	590 ± 160	58 ± 24
spleen	680 ± 190	62 ± 27
fat	240 ± 70	84 ± 36
grey matter	810 ± 140	102 ± 13
white matter	680 ± 120	92 ± 22

Free-Induction Decay (FID) after 90° pulse

rotating transversal magnetization M_{T} induces AC-voltage in antenna with frequency ω_{0} und decaying amplitude $\sim \exp \left(-t / T_{2}{ }^{*}\right):$

$$
M_{x}=M_{z 0} e^{-t / T_{2}^{*}} \cos \omega_{0} t
$$

after mixing in quadrature detector, we find:

$$
M_{x}^{\prime}=M_{z 0} e^{-t / T_{2}^{*}}
$$

however: M_{z} not yet in thermal equilibrium due to $T_{2}{ }^{*} \leq T_{1}$

Saturation-Recovery pulse sequence

1. pulse: regular FID signal
2. pulse:

FID signal with smaller amplitude since M_{z} not yet in thermal equilibrium due to $T_{2}{ }^{*} \leq T_{1}$
amplitude of following FID signal can be increased by choosing longer time (T_{R} time) between pulses

However:
allows for contrast selection! ($\mathrm{T}_{1} / \mathrm{T}_{2}$ weighting)

Inversion-Recovery pulse sequence

1. pulse:
no transversal magnetization \Rightarrow no signal in antenna, but

$$
M_{z}=M_{z 0}\left(1-2 e^{-t / T_{1}}\right)
$$

2. pulse:
induces transversal magnetization \Rightarrow FID signal with amplitude that depends on remaining longitudinal magnetization
if time between pulses $\left(t_{1 / 2}\right)$

$$
\begin{aligned}
& e^{\left(-t_{1 / 2} / T_{1}\right)}=1 / 2 \\
& \Rightarrow \\
& -t_{1 / 2}=T_{1} \ln (1 / 2) \\
& t_{1 / 2}=T_{1} \ln (2)
\end{aligned}
$$

\Rightarrow if $t_{1 / 2}$ chosen optimally, determine T_{1} !

magnetic resonance imaging（MRI）

Spin Echoes＊\dagger

E．L．Hahnt

Physics Department，University of Illinois，Urbana，Illinois
（Received May 22，1950）

$\alpha_{1} \gg(\Delta u)_{v 2}, T_{v} \ll \tau<T_{1}, T_{2}, \omega_{1} t_{v}=\frac{\pi}{2}$

a

b

c
Fig．2．Oscillographic traces for proton echoes in glycerine． The two upper photographs indicate broad and narrow signals corresponding to H_{0} fields of good and poor homogeneity．The pulses，scarcely visible，are separated by 0.0005 sec ．The induction decay following the first pulse in the top trace has an initial dip due to receiver saturation．The bottom photograph shows random interference of the induction decay with the echo for several ex－ interference of the induction decay with the echo for several ex－
posures．The two r－f pulses are phase incoherent relative to one another．

spin echoes (1)

given:
constant B_{0} field in z-direction and a rotating transversal field B_{T} with frequency ω_{T} :

$$
\begin{aligned}
& B_{x}=B_{T} \cos \left(\omega_{T} t+\Psi\right) \\
& B_{y}=B_{T} \sin \left(\omega_{T} t+\Psi\right) \\
& B_{z}=B_{0}
\end{aligned}
$$

observation:
after $90^{\circ} \mathrm{HF}$ excitation: FID signal (transversal magnetization, $\mathrm{T}_{2}{ }^{*}$ time) decays faster than longitudinal magnetization (T_{1} time)
reason:
every spin ensemble is subjected to slightly different magnetic field strengths (inhomogeneities) \Rightarrow dephasing of spin ensembles
is there a way to revert the dephasing of spin ensembles?

spin echoes (2)

rephasing of spin ensembles:
applying a $180^{\circ} \mathrm{HF}$ pulse after FID signal has died out leads to rephasing \Rightarrow measurable signal in antenna $=$ SPIN ECHO

magnetic resonance imaging (MRI)

spin echoes (3)

rephasing of spin ensembles with $180^{\circ} \mathrm{HF}$-pulse (phase $\psi=0^{\circ}$)
(1) $90^{\circ} \mathrm{HF}$-pulse: turn down magnetization into $+y^{〔}$-direction
(2) dephasing:
clockwise:
some spin ensembles lead
some spin ensembles are behind
(3) after $\mathrm{T}_{\mathrm{E}} / 2180^{\circ} \mathrm{HF}$-pulse ($\Psi=0^{\circ}$): rotate spins by 180° around x^{\prime}-axis
(4) too slow spins still too slow, faster spins still too fast (clockwise !) \Rightarrow rephasing!
(5) after T_{E} : all magnetic moments again in-phase

\Rightarrow measureable transversal magnetization
(in -y'direction) \Rightarrow spin echo

magnetic resonance imaging (MRI)

spin echoes (4)

rephasing of spin ensembles with $180^{\circ} \mathrm{HF}$-pulse (phase $\psi=90^{\circ}$)
(1) $90^{\circ} \mathrm{HF}$-pulse: turn down magnetization into $+y^{〔}$-direction
(2) dephasing:
clockwise:
some spin ensembles lead
some spin ensembles are behind
(3) after $\mathrm{T}_{\mathrm{E}} / 2180^{\circ} \mathrm{HF}$-pulse ($\Psi=90^{\circ}$): rotate spins by 180° around y^{\prime}-axis
(4) too slow spins still too slow, faster spins still too fast (clockwise !) \Rightarrow rephasing!
(5) after T_{E} : all magnetic moments again in-phase

\Rightarrow measureable transversal magnetization
(in $+y^{\prime}$-direction) \Rightarrow spin echo

spin echoes (5)

rephasing spin ensembles with Inversion-Recovery pulse sequence

magnetic resonance imaging (MRI)

spin echoes (6)

multiple spin echoes

- statistical dephasing of spins within an ensemble (T_{2} time)
- amplitude of spin echoes $\sim \exp \left(-\mathrm{t} / \mathrm{T}_{2}\right)$
- if $\mathrm{T}_{\mathrm{E}}>\mathrm{T}_{2} \quad \Rightarrow$ small spin echo amplitude
- if $\mathrm{T}_{2} \gg \mathrm{~T}_{2}{ }^{*} \quad \Rightarrow$ multiple spin echoes using $180^{\circ} \mathrm{HF}$ pulses
spin echoes (7)

FID signal amplitude decays with $\mathrm{T}_{2}{ }^{*}$
spin echo signal decays with $\mathrm{T}_{2}{ }^{*}$ (recovered FID)
maximum amplitude of spin echo signal decays with T_{2}
in general, we have: $\mathrm{T}_{2}{ }^{*}<\mathrm{T}_{2}<\mathrm{T}_{1}$
$\mathrm{T}_{2}{ }^{*}$ generally harder to measure
\Rightarrow echoes preferred for imaging!

Hahn echoes

rephasing of spin ensembles using two $90^{\circ} \mathrm{HF}$ pulses

magnetic resonance imaging (MRI)

gradient echoes

given:
$B_{z}=B_{00}+G_{z} z$ and
$B=\left(0,0, B_{\mathrm{z}}\right)$ field gradient in z-direction
precession frequency of spin ensembles differs for different z
for $G_{z}>0$:
spins lead if above $z=0$
spins are behind if below $z=0$
rephasing using $180^{\circ} \mathrm{HF}$ pulse or
 using polarity reversal of gradient field
for $\mathrm{G}_{\mathrm{z}}<0$:
spins are behind if above $z=0$ spins lead if below $z=0$
after T_{E} all magnetic moments
in-phase
\Rightarrow measurable transversal magnetization
\Rightarrow spin echo

basics of tomography

given: human body in strong B_{0} field

- sequence of HF pulses induces rotating transversal magnetization M_{T}
- M_{T} differs for different tissues \Rightarrow location-dependent observable: $M_{\mathrm{T}}(x, y, z)$
- small volume elements (voxel) have their own M_{T}
- but: all voxel contribute to signal in antenna
purpose of MRI:
generate sectional image of transversal magnetization $M_{\mathrm{T}}(x, y)$

$$
\begin{aligned}
& \text { by } \\
& \text { encoding signals from each voxel } \\
& \text { using appropriate pulse sequences }
\end{aligned}
$$

basics of tomography

pulse sequences

sequence	slices	matrix	acquisition time
Spinecho	Multi	256	$3-12 \mathrm{~min}$
Turbo SE	Multi	256	$1-4 \mathrm{~min}$
HASTE	Single Shot	$128-256$	$0,7-1,2 \mathrm{sec}$
Gradientenecho	Multi / 3D	256	$7 \mathrm{sec}-10 \mathrm{~min}$
Turbo FLASH	sequentiell	$64-128$	$300 \mathrm{~ms}-2 \mathrm{sec}$
EPI	Single Shot	$64-128$	$50-200 \mathrm{~ms}$
Turbo GSE	Multi / Single Shot	256	$360 \mathrm{~ms}-4 \mathrm{~min}$

basics of tomography
basic schemes of MRI pulse sequences:
spatial encoding:
selective excitation of a slice (often using G_{z}-gradient fields)
signal encoding with a slice:
phase encoding (often using G_{y}-gradient fields) (halfway between excitation and read-out of antenna signals)
frequency encoding (often using G_{x}-gradient fields) (during read-out of antenna signals)
characteristic strength of gradient fields: $\sim 40 \mathrm{mT} / \mathrm{m}$

basics of tomography

SVNWMWIIIII Hequency
G_{z} :
slice selection (z-direction)
G_{y} :
phase encoding (y-direction)
G_{x} :
frequency encoding (x-direction)
signal per voxel:
frequency- and phase-modulated FID or spin echo (depending on T1, T2)

magnetic resonance imaging (MRI)

basics of tomography

spatial encoding via selective excitation (1)

- HF-pulse turns spins into x - y-plane \Rightarrow measurable M_{T}
- G_{z}-field || B_{0}-field $\Rightarrow \omega_{0}$ differs in each z-slice

$$
\omega_{0}=+\gamma\left(B_{00}+G_{z} z\right)
$$

- excitation = resonance phenomenon
\Rightarrow turning of spins with proper ω_{0}
- resonance line has finite width (Lorentzian)
\Rightarrow no exact frequency matching of HF wave required

- exciting HF wave has finite spectral width $\Delta \omega$ (short pulse)
\Rightarrow HF excitation with gradient field turns spins in a slice of thickness:

$$
\Delta z=\frac{\Delta \omega}{\gamma G_{z}}=\frac{2 \pi \Delta f}{\gamma G_{z}}
$$

slice thickness Δz :
change bandwidth Δf of HF pulse ($\Delta z \rightarrow 0$? caveat: Boltzmann statistics!)
positioning of slice:
change strength of gradient field G_{z}

basics of tomography

spatial encoding via selective excitation (2)
different gradient field strengths map the same pulse onto slices with different slice thickness

basics of tomography

spatial encoding via selective excitation (3)
a sharp boundary between excited slice and neighboring non-excited areas can be achieved using a $\sin (\mathrm{x}) / \mathrm{x}$ amplitude function $B(t)$ of the HF pulse:

profile of transversal magnetization
with $\omega_{D}=$ difference of angular velocity wrt Larmor frequency at $z=0$

basics of tomography

spatial encoding via selective excitation (4)
use of unipolar pulse leads to inhomogeneous transversal magnetization
z-gradient and HF pulse lead to homogeneous transversal magnetization

basics of tomography

spatial encoding via selective excitation (5)

magnetic resonance imaging (MRI)

basics of tomography

phase coding (1)

- HF-pulse turns spins into $x-y$-plane assumption: there are no relaxation phenomena
- apply G_{y} field halfway between excitation and read-out
- step 0: G_{y}-field on for time $T_{\mathrm{y}} \Rightarrow$ precession velocity is function of y ; choose G_{y} such that magnetization is antiparallel a left and right boundary of image;
turn-off gradient \Rightarrow precession velocity unaltered ("freeze" spin orientation)
- steps 1 - 3: n-fold repetition (stepwise increase of G_{y}) until magnetization in neighboring voxel antiparallel
(image-size $256 \times 256 \Rightarrow n=256$!)
\Rightarrow coding of spatial information (y-direction) via phase !
- number of phase coding steps defines recording duration!

magnetic resonance imaging (MRI)

basics of tomography

phase coding (2)

- angular velocity of phase

$$
\omega_{p}=-\gamma\left(B_{00}+G_{y} y\right)+\gamma B_{00}=-\gamma G_{y} y
$$

- phase angle after T_{y} :

$$
\varphi_{p}=-\gamma G_{y} y T_{y}
$$

\qquad
strong gradients + short times
or

- magnetization in y-direction at time T_{y} :

$$
M_{T}^{\prime}(y)=M_{T_{0}}^{\prime}(y) e^{-i \gamma G_{y} y T_{y}}
$$

small gradients + long times

- maximally required gradient (for antiparallel orientation):

$$
\begin{aligned}
\varphi_{p, \max } & =\pi=-\gamma G_{y, \max } \Delta y T_{y} \quad \Delta y=\text { distance between pixel } \\
\frac{1}{\Delta y} & =2 \gamma^{*} G_{y, \max } T_{y}=\frac{\# \text { pixel in y - direction }}{\text { image size in y - direction }}
\end{aligned}
$$

magnetic resonance imaging (MRI)

basics of tomography

frequency coding

- HF-pulse turns spins into x - y-plane assumption: there are no relaxation phenomena
- apply G_{x}-field during read-out:
faster precession of spins in +x-direction slower precession of spins in -x-direction
- each voxel emits signal with different frequency during measurement
\Rightarrow coding of spatial information (x-direction) via frequency !

- magnetization in x-direction: $\quad M_{T}^{\prime}(x)=M_{T_{0}}^{\prime}(y) e^{-i \gamma G_{x} x t}$
- antenna records mixture of frequencies
\rightarrow decoding via Fourier-transform
- bandwidth of antenna $=\gamma G_{\mathrm{x}}$ times size of image in x-direction

basics of tomography

signal in antenna

- slice selection with z-gradient (signal = transversal magnetization)
- x-y-coding with x-gradient (frequency) and y-gradient (phase)
- total signal in antenna:

$$
S_{t}\left(t, T_{y}\right)=\iint M_{T_{0}}^{\prime}(x, y) e^{-i \gamma G_{x} x t-i \gamma G_{y} y T_{y}} d x d y
$$

- with $k_{x}=\gamma G_{x}$ tund $k_{y}=\gamma G_{y} T_{y}$ ("normalized" time; unit m^{-1}), we have:
since $M_{\mathrm{T}}^{\prime}(x, y)$ complex-valued
$S\left(k_{x}, k_{y}\right)$ complex-valued !

$$
S\left(k_{x}, k_{y}\right)=\iint M_{T_{0}}^{\prime}(x, y) e^{-i\left(k_{x} x-k_{y} y\right)} d x d y
$$

$$
M_{T_{0}}^{\prime}(x, y) \bigcirc \stackrel{2 \mathrm{D}-\mathrm{FT}}{ } \quad S\left(k_{x}, k_{y}\right)
$$

signal in antenna (quadrature detector) is Fourier-transform of images

basics of tomography

k-space (1)

- $k_{x}=\gamma G_{x} t$ and $k_{y}=\gamma G_{y} \mathrm{~T}_{y}$ (normalized time; unit m^{-1})
- from time-domain to position-frequency-domain
- k-space identical to u - v-plane for Fourier-transform of image in x-ray imaging:

$$
k_{x}=2 \pi u, k_{y}=2 \pi v
$$

- the longer the recording time the more contributes the signal to increasing spatial frequencies (resp. phases) in the image
\rightarrow more detailed structures having shorter wavelengths:

$$
k_{\mathrm{x}}=2 \pi / \lambda_{\mathrm{x}}, k_{\mathrm{y}}=2 \pi / \lambda_{\mathrm{y}}
$$

basics of tomography

k-space (2) spatial frequencies

entry in k-space determines the contribution of some stripe pattern to the image
coarse stripe pattern: low spatial frequencies (near origin of coordinate system)
fine stripe pattern: high spatial frequencies (at higher values of k_{x}, k_{y})

basics of tomography

k-space (3a) spatial frequencies

$$
\square+\square=\square \square \square \square
$$

magnetic resonance imaging (MRI)
basics of tomography
k-space (3b) spatial frequencies
an entry in k-space does not! correspond to a pixel in image
entries in k-space near the origin define coarse structures and thus contrast
entries at the boundaries of k-space define fine structures (edges, contours, etc.) and thus resolution

basics of tomography

Caveat: filtering of \boldsymbol{k}-space data!

basics of tomography

basics of tomography

k-space (4)
Cartesian sampling of k-space using Spin-Echo pulse sequence

Note:
previous assumption: no relaxation phenomena!

basics of tomography

k-space (5)
from signal via k-space to image

magnetic resonance imaging (MRI)

basics of tomography

k-space (6) relation to Radon transformation
assumption: no phase coding ($G_{y}=0$)
\Rightarrow signal in antenna:
$S_{t_{0}}(t)=\iint M_{t_{0}}^{\prime}(x, y) e^{-i \gamma G_{x} x t} d x d y$
\Rightarrow in k-space:

$$
S_{0}\left(k_{x}\right)=\int(\underbrace{\int M_{t_{0}}^{\prime}(x, y) d y}) e^{-i k_{x} x} d x
$$

equivalent to projection in CT under angle $\Theta=0^{\circ}$ and x variable

$$
\mathrm{p}_{0}(x)
$$

$S_{0}\left(k_{x}\right)$ is 1D-Fourier transform of projection

basics of tomography

k-space (7) relation to Fourier-slice theorem
recap: 1D-Fourier transform of projection provides data for Fourier-transformed image of a beam passing through the origin of coordinate system

CT:

- complete dataset in k-space via recording sufficiently many projections under different angles Θ
- recorded projections need to be Fourier-transformed, before assigning them to the Fourier-transformed image

MRT:

- complete dataset in k-space via simultaneous switching of G_{x} - and $G_{y}-$ gradients during read-out (tilted projections in k-space)
- continued rotation: G_{x}-gradient in rotated system via rotating the coordinate systems around z-axis
- data are the (complex-valued) Fourier-transform of projections and can thus directly be assigned to "image" in k-space

basics of tomography

k-space (8) relation to Fourier-slice theorem

basics of tomography

k-space (9) relation to Fourier-slice theorem

- we have: the Fourier transform (FT) of a rotated image results in a Fouriertransformed image rotated by the same angle
\Rightarrow
- Fourier transform of a rotated projection delivers values of a Fourier-transformed images on a rotated beam through the origin of coordinate system
- sampling of Fourier space of an image by successively rotating the field gradient
- image construction via inverse Fourier transformation

basics of tomography

k-space (10) Cartesian sampling

1) choose arbitrary initial value in k-space via phase-coding
2) k_{y} varies (due to G_{y}-gradient), however, k_{x} remains constant at each sampling point (magnetization vector varies with $k_{y}=\gamma G_{y} T_{y}$)
3) switch on G_{x}-gradient (frequency-coding) read-out along line parallel to k_{x}-axis

4) etc.

basics of tomography

k-space (11) sampling with projections

1) fixed initial value in k-space (e.g. origin), since no phase-coding
2) tilted field-gradients (G_{x} - and G_{y}-gradient): alignment of magnetization vectors towards border of k-space

3) sampling on radial beam
4) etc.

basics of tomography

k-space (12) "spiral imaging"

1) fixed initial value in k-space (e.g. origin), since no phase-coding
2) sampling along arbitrary trajectories via altering G_{x} - and G_{y}-gradients during read-out

- ramp-like
- sinusoidal-like

- etc.
magnetic resonance imaging (MRI)
system components

components of an MRI system

components of an MRI system

- strong magnet to generate static homogeneous magnetic field (0.1 - 4.0 T; for comparison: earth magnetic field $30 \mu \mathrm{~T}-60 \mu \mathrm{~T}$)
- HF generator and transmitter coil to generate oscillating magnetic field for excitation
- gradient coils to generate magnetic field gradients for spatial encoding (~ $40 \mathrm{mT} / \mathrm{m}$)
- receiver coils for HF signals
- control computer
- console for data input/output and control of system functioning

magnetic resonance imaging (MRI)

magnet

largest and heaviest system component (characteristic: 5-10 tons)
magnetization in body \sim field strength
\Rightarrow improvement of signal-noise-ratio \sim field strength
but: with increasing field strength:

- prolongation of T_{1} time
- prolongation of recording duration
- increase of chemical shift \Rightarrow more artifacts
chemical shift:
- shift of resonance frequency of nucleus depending in chemical bond (e.g., structure of molecule)
- weakening of applied magnetic field by electron shell proportional to magnetic field strength

magnet

range	field strength	Larmor- frequency	T1 white matter brain	chemical shift fat/water $(3.5 \mathrm{ppm})$	SNR white matter brain (rel. units)
very small	$0,02 \mathrm{~T}$	852 kHz	$?$	3 Hz	$\approx 0,02$
small	$0,5 \mathrm{~T}$	$21,3 \mathrm{MHz}$	540 msec	75 Hz	0,6
medium	1 T	$42,6 \mathrm{MHz}$	680 msec	149 HZ	1
large	4 T	$170,4 \mathrm{MHz}$	1080 msec	595 Hz	2,3

for $\omega_{0}>40 \mathrm{MHz}$: shading due to skin effect !
(i.e., weakening of external field due to eddy currents induced by HF field)

magnetic resonance imaging (MRI)

system components

magnet

identical recording parameter
different impression of images due to field-strength dependent signal-to-noise ratio

1.5 T

recording parameter optimized
(wrt field strength)
homogeneous impression of image

magnet - requirements

requirement	range $^{* *}$	problem
homogeneity	$1 \mathrm{ppm} \mathrm{(20} \mathrm{~cm} \mathrm{sphere)}$ $10 \mathrm{ppm}(40 \mathrm{~cm}$ sphere $)$	shortening of T_{2} image distortions
long-term stability	$0.1 \mathrm{ppm} / \mathrm{h}$	Larmor frequency unstable (drift)
short-term stability		phase coding unstable (drift)
scatter field	0.5 mT -limit* in lateral direction at 3 m in longitudinal dir. at 5 m	disturbs functioning of other devices (e.g. pace maker) dangerous attraction of iron-bearing materials

* 0.5 mT = limit for heart pace maker
**reported values are orders of magnitude only
magnetic resonance imaging (MRI)

magnetic resonance imaging (MRI)

Junge stirbt im Tomographen

New York. (dpa/tlz) Tödliche Kräfte eines Kernspintomographen: Ein Sechsjähriger wurde von einem Sauerstoffkanister getroffen, den das Gerät angesogen hatte.
magnetic resonance imaging (MRI) system components

magnet

best suited: superconducting magnets
characteristic: cylindrical coil, patient in center
multi-filament-wire: niobium-titanium-alloy (embedded in copper matrix)

- single wire consists of ~ 30 filaments (each 0.1 mm diameter)
- diameter of Cu-matrix: ~ 2 mm
- for 1T field strength: 10 km length of wire with mean radius of 550 mm
- lossless transport of currents of up to 500 A (characteristic: 200 A)
- stored magnetic field energy ~ 4 MJ (@200 A)
$\mathrm{Nb}-\mathrm{Ti}$ is superconducting below critical temperature $\mathrm{T}_{\mathrm{c}} \sim 4.2 \mathrm{~K}$ (liquid He):
- induced current indefinitely (almost) persists with no power source

Meißner-Ochsenfeld effect:

- perfect shielding of external magnetic fields

magnet ("charging")

a magnet can be charged within in hour due to $U=L \mathrm{~d} / / \mathrm{d} t$:
example:

- current source with $10 \mathrm{~V}, 200 \mathrm{~A}, 2000 \mathrm{~W}$
- heating of a jumper in magnet above Tc
- if induced current reached (e.g.) 200 A, turn off heating
- magnet becomes superconducting (in liquid He)
- remove current source

magnet (shimming)

- magnet does not provide required homogeneity (e.g. after heating,...)
- field balancing (shimming) through mounting of iron sheets and/or correction with dedicated shim coils
- field in open inner area of magnet must follow Laplace equation.

We have: $\vec{\nabla} \mathrm{x} \vec{B}=0$ and $\vec{\nabla} \cdot \vec{B}=0$

- In general, we have: $\vec{\nabla} \times(\vec{\nabla} \times \vec{B})=\vec{\nabla} \cdot(\vec{\nabla} \cdot \vec{B})-\Delta \vec{B} \Rightarrow \Delta \vec{B}=0$
- find solutions for B_{z} through expansion in spherical harmonics
- recording B_{z} on central axis an on sphere (different angles θ and φ) allows estimation of low-order coefficients of expansion
- compensation of all coefficients with iron sheets and shim coils

gradient coils (1)

important characteristics of gradient coils	typical orders of magnitude for a coil diameter of 80 cm
gradient circuit time	$10 \mathrm{mT} / \mathrm{m}$ in 0.5 s
inductance	$200 \mu \mathrm{H}=200 \mathrm{Vs} / \mathrm{A}$
current / gradient	$30 \mathrm{~A}(\mathrm{mT} / \mathrm{m})$
fast pulse-sequences:	
up to $20 \mathrm{mT} / \mathrm{m}$	
small inductance:	
rapid switching, but:	
low number of turns	

fast switching of gradient coils causes strong knocking noise!
(mechanical forces that act on coils, cf. loudspeaker)

gradient coils (2)

most often used coil configurations

G_{x}-coil tilted by 90°
estimation of field using Biot-Savart law: $d \vec{B}=\frac{\mu_{0} I}{4 \pi r^{3}} \vec{r} \times d \vec{I}$

gradient coils (3)

1984: Jedi-helmets

gradient coils (4)

compensation for eddy currents (many components of magnet contain aluminum \rightarrow eddy currents !)

without compensation

transmit/receive coils (1)

requirements:

- generation and detection of oscillating B-field transversal to longitudinal direction of magnet (z-axis)
- frequency depends on B_{0} (21.3 MHz @ 0.5 T; 42.6 MHz @ 1.0 T; 63.9 MHz @ 1.5 T)
- homogeneous excitation (smooth flip angles)
problems:
- dimensions of coil > wavelength
- conducting components typically have parasitic capacitances and inductances
- impedance adjustment to transmitter/receiver

transmit/receive coils (2)

very small magnetic field strengths resp.
very low frequencies
(principle: pair of Helmholtz coils)
"birdcage" coil

strong magnetic field strengths resp.
high frequencies
(principle: sinusoidal distribution of currents along cylinder barrel generates homogeneous field inside cylinder)
sizing of coil such that noise as small as possible in general: the smaller the coil coverage the lower the noise !
magnetic resonance imaging (MRI) system components

transmit/receive coils (3)

- MRI-images depict the local strength of the transversal magnetization $M_{\mathrm{T}}(x, y)$ at the time of maximum amplitude of an echo
- $M_{\mathrm{T}}(x, y)$ depend on properties of the tissue and on control parameter of a pulse sequence
- def. contrast: $\quad K=\frac{I_{1}-I_{2}}{I_{1}+I_{2}} \quad$ where $I_{1,2}=$ signal of tissue 1,2
- K depends on noise in $I_{1,2}$
- the larger a pixel the higher the signal amplitude and the smaller the noise
- but: diminished spatial resolution!
\Rightarrow
strong mutual dependence of contrast, noise, and spatial resolution

influencing variables

tissue properties
proton density ρ
long. relaxation time T_{1}
transv. relaxation time T_{2}
chemical shift
field inhomogeneities T_{2}^{*}
transport and movement
uptake contrast agent

MRI system parameter
repetition time T_{R}
echo time T_{E}
flip angle α
inversion time T_{i}
field data ($B_{0,} G_{x,}, G_{y,} G_{z}$)
sequence (spin-echo, etc.)

sequences: proton density weighting

choose $T_{E} \ll T_{2}$ and $T_{R} \gg T_{1}$

sequences: T_{1}-weighting

a short repetition time T_{R} allows for T_{1}-weighted images

sequences: T_{2}-weighting

a long echo time T_{E} allows for T_{2}-weighted images
different weightings using a saturation-recovery sequence

proton densityweighted	$\mathrm{T}_{1}-$ weighted	$\mathrm{T}_{2}-$ weighted
$\begin{gathered} \mathrm{T}_{\mathrm{R}} \text { long } \\ \text { (e.g. } 2000 \mathrm{~ms} \text {) } \end{gathered}$	T_{R} short (e.g. 500 ms)	T_{R} long (e.g. 2000 ms)
$\begin{gathered} \mathrm{T}_{\mathrm{E}} \text { short } \\ \text { (e.g. } 15-30 \mathrm{~ms} \text {) } \end{gathered}$	T_{E} short (e.g. 15-30 ms)	$\begin{gathered} \mathrm{T}_{\mathrm{E}} \text { long } \\ \text { (e.g. } 100-200 \mathrm{~ms} \text {) } \end{gathered}$

different weightings allow for different contrasts
\rightarrow potential of MRI!
\rightarrow contrast optimization is application-dependent!

proton density-weighted
T_{2}-weighted

T_{1}-weighted

T_{2}-weighted

T_{1}-weighted

T_{2}-weighted

proton densityweighted
in general, we have:
envelope of spin echo corresponds to modulation transfer function (MTF)
thickness of excited slice (z-direction):

- the steeper the G_{z}-gradient field resp. the smaller the bandwidth of HF signal the thinner the slice
characteristic values: few mm

$$
\Delta z=\frac{\Delta \omega_{s}}{\gamma G_{z}}
$$

lateral resolution (x-, y-direction):

- depends on G_{y} - and G_{x}-gradient fields (phase- and frequency-coding) and their related recording times T_{y} und T_{s}

$$
\Delta y=\frac{\pi}{\gamma G_{y, \text { max }} T_{y}} \quad \Delta x=\frac{\pi}{\gamma G_{x} T_{s}}
$$

typically: $(\Delta x, \Delta y) \geq \Delta z$

limiting factors for lateral resolution:

- relaxation phenomena (signal indistinguishable from noise after long times)
- frequency resolution and bandwidth of detector
- processing speed of AD-converter (avoidance of aliasing artifacts)
- technical limits for the generation of gradient fields

further influencing factors:

- homogeneity of magnet (image distortions)
- linearity of gradients (image distortions)
- chemical shift
proton Larmor frequency differs in different environments
fat image and water image shifted relative to each other (for field strengths > 3T)
\rightarrow diminished detail discrimination

$$
S N R=M_{T_{0}}(\vec{r}) \sqrt{\frac{\omega_{0} \mu_{0} Q}{4 k T V_{e f f} \Delta f}} \sqrt{N_{m} N_{p} N_{a}} 10^{\left(-\left(\delta+F_{r}\right) / 20\right)} e^{\left(-T_{E} / T_{2}\right)} d v
$$

important influencing factors :

- saturation magnetization $M_{\mathrm{T} 0}(\mathrm{r})$ (increases with B_{0})
- quality Q of coil: ohmic resistance of coil, bandwidth of detector, ohmic resistance due to eddy currents induced in body !
- effective volume $V_{\text {eff }}$ "seen" by the coil
- recording bandwidth Δf (Nyquist theorem)
- number of samples N_{m}, of phase coding steps N_{p} and total averaged samples N_{a} (assumption: statistically independent individual recordings !)
- noise in recording circuit (damping @ input δ und noise figure F_{r}) in dB
- ratio echo time T_{E} and relaxation time T_{2}
- volume of recorded voxel $d v$

```
movement/transport no movement
- phase effects
- amplitude effects
```

- device
- sampling error (truncation, aliasing)
- B_{0}-inhomogeneities
- eddy currents
- insufficient field-of-view
- cross-talk between neighb. slices
- patient
- chemical shift
- strong susceptibility gradients

magnetic resonance imaging (MRI)

movement artifacts (1)

rigid (global movements, breathing): phase shift in Fourier data
elastic (local movements, e.g. heart): practically not correctable

movement artifacts due to breathing

intensity modulation in k-space due to breathing and "ghost images"

movement artifacts (2)

global movement: patient leaves scanner during recording

magnetic resonance imaging (MRI)

movement artifacts (3)

- spins change either their position during measurement or their velocity (blood, CSF !)
- ghost images or complete signal loss
- potential solutions with dedicated sequences:
- flow rephasing via pre-saturation
- flow compensation via double- or triple-gradient pulse

without

with

swallow

no swallow

field inhomogeneities from materials with different susceptibilities

- spin-spin coupling (T2 time) changes magnetic field locally
- modification of Larmor frequency
- spatial assignment distorted
\Rightarrow geometric distortion
- relaxation effect differ
\Rightarrow inhomogeneous intensities
positive usage:
imaging with susceptibility parameter!

field inhomogeneities from materials with different susceptibilities

when using long echo times, local dephasing effects can lead to signal loss in areas between tissues having different susceptibilities

dental filling
field inhomogeneities from materials with different susceptibilities massive susceptibility artifacts
metal clip in hair band ("cone-head")
brace

belt

chemical shift

- proton Larmor frequency differs in different environments
- fat image and water image shifted relative to each other bright area:
overlay of fat- and water protons
dark area:
no imaging of protons
- can be corrected with dedicated sequences (e.g. fat saturation)

frequency coding

device-induced artifacts, insufficient sampling

moving coil

RF interference ventilator

sampling error (aliasing) field-of-view too small

k-space scanning options

 SE
GRE
TurboFLAIR
MP-RAGE

Turbo-SE
Turbo-GSE

HASTE EPI

echo planar imaging (EPI)

magnetic resonance imaging (MRI)

turbo spin echo (TSE)

- utilize spin echoes with 180° pulses
- after excitation (G_{z}, origin of coord. system): positioning (to pos. A) in k-space with gradient G_{x}
- mirroring with 180° pulse (pos. B)
- during echo: frequency coding $\left(\mathrm{G}_{\mathrm{x}}\right)$
- phase coding $\left(\mathrm{G}_{\mathrm{y}}\right)$ leads to pos. C
- frequency coding (G_{x}) to pos. D
- echo provides next row in k-space
- etc.
- echo decays with T_{2} (tissue-dependent !)
- max. 32 echoes after single HF excitation
- k-space sampling equals lowpass filtering (strong damping in k_{y}-direction)

gradient and spin echo (GRASE)

- signal from EPI-sequence decays with $\mathrm{T}_{2}{ }^{*}$
- spin-rephasing with 180°-pulses \Rightarrow spin echo
- GRASE: following EPI sequence generate gradient echoes with 180° pulses
- repeat until spin echo signal died out with T_{2}

magnetic resonance imaging (MRI)

- proton density can hardly be varied in tissue
- contrast agent: modify T_{1} and/or T_{2} with paramagnetic substances
- mostly used: Gd^{3+} (gadolinium)
- shortens T_{1} time (T_{1}-weighted images: increased signal amplitude)
- applications: e.g. angiography
- Gd^{3+} highly toxic, requires embedding, e.g. in chelate compound: Gd-DTPA (Gd-diethylene-tri-amine-penta-acetic acid)
- (other, particularly body-intrinsic contrast agents: cf. fMRI)

head	tumor, infarct, multiple sclerosis, epilepsy, Alzheimer's disease dementia, chron. headache, mental retarding spinal cord diseases of spinal cord, tumor, ruptured disk, bleeding, infarct, vascular malformations, trauma ENT thmorax affecting nose, pharynx, mouth, tongue
ophthalmology cardio-vascular chest wall, pleura, tumor locomotor system	diseases of cavity of eye, intraocular tumor gastro-
enterology	necrosis, meniscus, cruciate ligament, cartilages, joints or occlusion
urology	tumors in liver, gall bladder, pancreas
gynecology	alterations in uterus

MR-angiography (heart + lung)

infarct (heart)

stenosis of aorta cerebri

advantages

- multi-planar slicing
- high contrast of soft tissue
- no ionizing radiation
- signal depends on large number of physical parameter \Rightarrow high flexibility

disadvantages

- high costs
x 10 compared to x-ray imaging, x 4 compared to CT
- availability
- contraindications

magnetic resonance imaging (MRI)

comparison to other medical imaging techniques (structure)

	x-ray	CT	MRI
presentation bones presentation soft tissue presentation vessels presentation volumes	+++	++	+++
functions	-	-	+
image quality	-	++	++
psychiatric burden	low	++	
physical burden	high	-	$++(f M R I)$
invasivity	no good	good	acceptable
exam time	10 min	25 min	25 min

magnetic resonance imaging (MRI)

fields of application of medical imaging techniques (structure)

	X-ray	CT	MRI
bones	+++	+++	+
bone marrow	-	-	++
lung	+++	+++	-
soft tissue	$-/+$	+++	++++
brain	-	+++	++++
spinal cord	-	$++)$	++++
gastro-intestinal syst.	+++	$+/++$	+++
cartilage	-	$+/+$	$++/+++$
vascular system	+++	++	++++
heart	+	+++	++
liver/spleen	-	+++	++
kidneys	$+/++$		

